ESBiomech24 Congress in Edinburgh

Lecturer / Assistant Professor in Biomechanics in Sheffield, UK

The Department of Mechanical Engineering at the University of Sheffield (UK) is looking to expand its academic team in a number of areas. Our priority in this recruitment call is to bring in excellent individuals working in emerging areas within their field who are also able to contribute to our cross-disciplinary efforts in tackling global challenges. This specific post requires an expertise in Biomechanics, but please bear in mind the overall aim of the call when putting together your application.

Biomechanics is one of our main research themes and we are particularly interested in candidates who can benefit from and complement existing expertise, for example by collaborating with colleagues on new research initiatives that extend our capabilities in this area.

You will have expertise in biomechanics. We are particularly interested in extending our capabilities in the areas of gait biomechanics and wearable sensors, experimental tissue biomechanics, multiscale and data-driven computational modelling.

As Lecturer, you will conduct a programme of research, attracting external funding from a range of sources, publishing work in high-quality peer-reviewed journals and attending conferences and seminars. You will also carry out teaching duties including designing, delivering, assessing and reviewing teaching programmes for undergraduate and postgraduate students.

Initially you will be allocated a lighter than average teaching load (for example one 10 credit course) and reduced administrative duties to allow focus on establishing a research career and developing as a teacher. We will also provide a generous support package to ensure rapid progress in research activity.

Interested candidates can apply here.

Research Fellow in Synchrotron Tomographic Imaging of Joint Mechanics @UCL

This post will use tomographic and SAXS imaging and in situ rigs to quantify the impact of physiological loading conditions on the behaviour of our joints. You will further develop experimental methodologies and analysis codes to measure strains at the nanoscale using digital volume correlation (DVC). The post will also work as part of the CZI funded HiP-CT project scaling these techniques up to large animal and potentially human (ex vivo) joints (see https://mecheng.ucl.ac.uk/hip-ct/).

Location: London.

Advert closing on 15 Jan 2023.

More information: https://www.ucl.ac.uk/work-at-ucl/search-ucl-jobs/details?jobId=2801&jobTitle=Research%20Fellow%20in%20Synchrotron%20Tomographic%20Imaging%20of%20Joint%20Mechanics

PhD Scholarship on Optimal hip implant design with additively manufactured porous structures @Universidad de Navarra

Worldwide the increase in the geriatric population with musculoskeletal problems and the increase in the incidence of sports injuries and traffic accidents are contributing to the growth of knee, hip, or spine surgeries. Current surgical treatments, generally placing implants, significantly improve the quality of life of patients. However, patients who have had surgery at a young age are very likely to need revision surgery due to implant failure, with the complications that this entails due to the poor condition of the tissue around the implant. To meet the challenging demands of orthopedic implants, complex porous structures that improve the biomimicry between the implant and the surrounding bone tissue are gaining special interest thanks to the development of Additive Manufacturing (AM).

Within this context, the Mechanics of Materials and Advanced Manufacturing research group in TECNUN- Engineering Faculty of University of Navarra (San Sebastian, Spain) has recently been awarded a research project to optimize the design of hip implants through additively manufactured porous structures. The successful PhD candidate’s activities include the design, manufacturing and in-vitro validation of such structures, with special focus on exploring the possibilities of metal additive manufacturing for biomedical applications.

We are currently accepting applications from enthusiastic and highly talented candidates who meet the following requirements:

–             A MSc degree in Mechanical Engineering, Biomedical Engineering or similar.

–             Experience in additive manufacturing and/or computational biomechanics is appreciated.

–             A research-oriented attitude.

–             Fluent in spoken and written English. Knowledge of Spanish will be appreciated.

Outstanding candidates are invited to submit a CV and a Motivation Letter to Dr Naiara Rodriguez-Florez (nrodriguezf@tecnun.es).

Postdoc position in shoulder biomechanics @ETH Zurich

A post-doctoral research fellowship is available at the Institute for Biomechanics (ETH Zurich) under the guidance of Prof. Stephen Ferguson, in collaboration with the Schulthess Klinik represented by Prof. Philipp Moroder. The overarching goal is to establish a reference centre for shoulder biomechanics as a collaborative research group connecting the expertise of the partner institutions in clinical science, surgery, human movement analysis, experimental methods and computer simulation to better understand the mechanisms of shoulder injury and degeneration, to explore improved treatments of trauma and pathology and to establish objective measures of clinical outcome.

The post-doctoral research fellowship is available from 01. March 2023, initially funded for a period of three years, with the vision to extend this, contingent on the successful acquisition of additional third-party funding

For further details and application please visit:

https://www.jobs.ethz.ch/job/view/JOPG_ethz_y4jqbFuUYbH5kIYpcu

For more information, please contact Prof. Stephen Ferguson (sferguson@ethz.ch). Note that no applications will be accepted via email.

PhD position in Biomechanics & Modelling @Balgrist University Hospital and AO Research Institute Davos, Switzerland

Pseudoarthrosis is a common complication of spondylodesis and occurs in 5-35% of all cases. Besides biological factors, mechanics play a key role in the success of treatment and must be ensured by appropriate fixations. Validated patient-specific computer simulations could help avoiding mechanics-related issues in spondylodesis and thus reducing pseudarthrosis rates.

Within this context, the Spine Biomechanics group of the Balgrist University Hospital (Zurich, Switzerland) and the Biomedical Development Program of the AO Research Institute Davos (Davos, Switzerland) are looking for a highly motivated individual holding a master’s degree in engineering to work as a PhD student at the two hosts in a shared setting and to be enrolled in the PhD program of ETH Zurich. The successful candidate’s activities will be focused on the development and validation of an analysis framework combining biomechanical testing, medical image processing and computer simulations.

The position is available for a duration of 4 years. For further details and application please visit:

https://careers.aofoundation.org/job/Davos-Platz/860647301/

For more information, please contact Dr. Peter Varga (peter.varga@aofoundation.org). Note that no applications will be accepted via email.

PhD position on the role of hypoxia signaling in cartilage health @University of Oulu

Healthy cartilage functions in an environment with low oxygen levels (normoxia) and changes in oxygen sensing have been associated with osteoarthritis. This project aims to clarify hypoxia signaling in cartilage with varying mechanical loading and oxygen pressures. Ultimately our research aims to identify potential therapeutic molecules that can prevent cartilage degeneration and osteoarthritis.

The position is supervised by Dr. Mikko Finnilä, who has recently formed his own research group that studies musculoskeletal biomaterials. His group is focused on imaging and biomechanics of tissues and biomaterials to identify more effective materials for musculoskeletal repair. Group has active collaboration internationally as well as with local industry. The most important collaborators for this project are Prof. Marcy Zenobi-Wong (ETH Zurich) and Prof. Peppi Karppinen (Faculty of Biochemistry and Molecular Medicine).

More information:

https://rekry.saima.fi/certiahome/open_job_view.html?did=5600&lang=en&id=000014020&jc=1

Two Faculty Positions in Mechanical Engineering @EPFL

The Institute of Mechanical Engineering invites applications for two faculty positions at the level of
tenure track Assistant Professors in the fields of Sustainable Manufacturing and Biomechanics.

For the position in Biomechanics, we seek applicants with a mechanics background who will address
research challenges related to the development of theoretical and computational models to investigate,
and potentially control or design, biological materials and systems. Research areas of interest include, but
are not limited to: (i) cell and tissue mechanics; (ii) architected biomaterials; (iii) prosthetic and assistive
mechanical devices; and (iv) pre-operative modeling for surgical interventions.

More information:

Postdoc position in Tomo-SAXS: Dynamic Tomographic and SAXS Imaging of Joint Mechanics @University College London

Closing date 30 september!

UCL is seeking to appoint a Research Fellow to be part of an international, EPSRC funded project to couple synchrotron micro-tomography and SAXS to enable imaging of fibrillar tissue in joints and intervertebral discs. The bioengineering challenge is to determine the correlated 3D deformation and structural changes at the molecular-, fibrillar-, and cell-matrix length-scales under physiological load in intact tissue, and how these alter in ageing, injury, and disease. You will be based at Harwell Campus where Diamond Light Source is located, but will also work with collaborators at QMUL, Manchester, and ESRF (Grenoble). You will also work as part of the CZI funded HiP-CT project scaling these techniques up to large animal and human (ex vivo) joints (see mecheng.ucl.ac.uk/hip-ct/).

Your goal will be to adapt in situ rigs for physiological loading for CT and SAXS imaging and develop experiments and analysis codes to measure strains at the nanoscale using digital volume correlation. A second PDRF will lead the 3D-SAXS development.

The successful candidate will join a dynamic international multidisciplinary group of engineers, biologists, beamline scientists, post-docs and PhD students developing and applying synchrotron X-ray and other techniques to study biological systems. The project is led by Dr H Gupta at QMUL, and Prof. PD Lee leads the UCL component. You will be based at Harwell Campus, but will perform experiments at Diamond, ESRF in Grenoble, and other locations.

The position is available immediate for 2 years.

More information:

https://atsv7.wcn.co.uk/search_engine/jobs.cgi?amNvZGU9MTg4NjUyMCZ2dF90ZW1wbGF0ZT05NjUmb3duZXI9NTA0MTE3OCZvd25lcnR5cGU9ZmFpciZicmFuZF9pZD0wJmpvYl9yZWZfY29kZT0xODg2NTIwJnBvc3RpbmdfY29kZT0yMjQ&jcode=1886520&vt_template=965&owner=5041178&ownertype=fair&brand_id=0&job_ref_code=1886520&posting_code=224

Postdoc position on numerical modelling of additively manufactured alloys @Uppsala University

Project description
Magnesium-based alloys are some of the most promising materials for future degradable implants. With the help of additive manufacturing, patient-specific implants can be created. However, there is limited knowledge of how to manufacture these types of materials using additive manufacturing. One of the challenges is the high reactivity of magnesium, which leads to evaporation in the chamber and too high levels of intermetallic compounds, resulting in excessive degradation rates. One solution could be amorphous alloys. This project aims to use numerical models to develop such types of materials, and design alloys with appropriate degradation and mechanical properties.

Work duties
The work duties within this interdisciplinary research project include conducting high-quality research, in collaboration with other team members, from the design and manufacturing of the alloys, to characterization of the same, results analysis and finally publication of the work. The work involves, among other things, to plan and carry out different types of studies in numerical modelling of materials, in particular through thermodynamic calculations and the development of numerical nucleation and growth models and their implementation in finite element software. Some verification experiments are also expected to be completed, including through synchrotron and neutron studies. The work also includes analysing the results and, through scientific articles and presentations at international conferences, spread the new knowledge.

The position may include some supervision of students in undergraduate and postgraduate education.

More information:

https://www.uu.se/en/about-uu/join-us/details/?positionId=542805

Application deadline: 25 October 2022!

PhD scholarship on Integrating Four-Dimensional Synchrotron Imaging and Computational Modeling at QUT/UPEC/USASK

Institutes: Queensland University of Technology (QUT, Australia), University of Paris Est (UPEC, France), and University of Saskatchewan (USASK, Canada).

Supervisors: Prof. Peter Pivonka (QUT, peter.pivonka@qut.edu.au) and Prof. Vittorio Sansalone (MSME UPEC, vittorio.sansalone@u-pec.fr)

Résumé: We seek to better understand how cortical bone is affected by osteoporosis and drug treatments. Longitudinal experimental data in a rabbit model of osteoporosis will be collected by Prof David Cooper (USASK) at the Canadian Synchrotron. The successful PhD candidate will use machine learning algorithms to assess morphological changes in cortical bone and to track bone remodeling units over time using co-registration techniques based on provided synchrotron imaging data. Additionally, the candidate will develop a computational model to predict changes in cortical porosity and effects on bone matrix properties due to osteoporosis and other treatment regimens developing state-of-the-art bone adaptation algorithms.

Closing date: Applications will be accepted until the scholarship is awarded, but applications will be assessed early October, 2022.

More information (salary, essential and desirable criteria, etc.) here:


Corporate members of the ESB:

AMTI force and motion logo
BERTEC logo
Beta CAE logo
BoB Biomechanics logo
Materialise logo
Nobel Biocare logo