ERC-Funded PhD Position in Computational Modelling of Bone Adaptation and Regeneration – ETHZ

The Laboratory for Bone Biomechanics headed by Prof. Ralph Müller at the Department of Health Sciences & Technology, Institute for Biomechanics at ETH Zurich is offering an
ERC-Funded PhD Position in Computational Modelling of Bone Adaptation and Regeneration
The aim of the research is to develop computational models of bone adaptation and regeneration incorporating data from the cellular to the organ scale. A range of computational models exist which propose a variety of mechanisms by which bone is adapting and regenerating at both tissue and the cell level. Simulations become especially useful when examining complex mechanically driven systems such as the bone remodeling process and therefore have been gaining momentum in the scientific community. Unfortunately, the insight, which can be provided by cell or tissue level models, is limited, while the two systems remain unlinked and validation with detailed cell-level data are still lacking. Within this position, therefore, novel computational tools will be developed to simulate the mechanoregulation in bone associated with adaptation and regeneration. A multiscale model will be developed combining three types of computer models: Boolean networks to model interaction between molecules and cells; cellular automaton to model bone microstructure; and micro-finite element analysis to calculate mechanical tissue loading; the mechanical signal for the bone cells. In the end, these simulations will be compared to in vivo data from an animal experimental study. This PhD project is embedded in a larger group effort funded by the European Research Council (ERC) through an ERC Advanced Grant called MechAGE, which aims to investigate in vivo single-cell mechanomics of bone adaptation and regeneration in the aging mouse.
The successful candidate holds or will soon receive a master’s degree in Computational Science and Engineering, Computer Science, Electrical Engineering, or Applied Mathematics, preferably with some background in computational modelling with cellular automaton and Boolean networks. It is essential that the candidate is willing and motivated to work on the foundations of biological computer modelling and simulation. Additionally, excellent communication skills in English (oral and written) are required.
We look forward to receiving your online application including a motivation letter, CV, university transcripts and names and contact details of two references. Please note that we exclusively accept applications submitted through our online application portal. Applications via email or postal services will not be considered.

For further information about the group please visit our website www.bone.ethz.ch. Questions regarding the position should be directed to Dr. Patrik Christen by email patrik.christen[at]hest.ethz.ch (no applications).

PhD position in Biomechanics – Karl Landsteiner University of Health Science

 

Established in 2013, the Karl Landsteiner University of Health Sciences (KL) is part of an academic and research community located at the Campus Krems, and includes a network of comprising teaching hospitals in St. Pölten, Krems and Tulln. The university offers degree programmes in Human Medicine, Psychotherapy, Counselling Sciences and Psychology, which are tailored to the requirements of the Bologna model, opening the door to new, cutting-edge health professions. KL is committed to raising its profile in specific areas of biomedicine, biomedical engineering, and biopsychosocial sciences by entering into strategic academic and research partnerships with other institutions.

Starting at January 2018, the department of anatomy and biomechanics (division of biomechanics, Prof. Dieter Pahr, dieter.pahr@kl.ac.at) offers a research position, which is limited to the duration of three years:

PhD Position in Biomechanics

Your responsibilities:

  • Participation in the funded research projects
  • In more detail, using of micro CT imaging, biomechanical testing, finite element simulations, and 3d printing
  • Programming of evaluation- and analysis scripts
  • Assistance in teaching in the fields of mathematics, physics, informatics and biomedical engineering
  • Engagement in other research projects

Your profile:

  • Degree in civil or mechanical engineering, biomedical engineering, technical physics, or similar fields
  • Basic knowledge in programming, biomechanics, imaging (CT), experimental material characterization
  • Good English skills
  • Skills in script programming as well as experience in finite elements simulations of advantage
  • The willingness to support teaching, experience is of advantage
  • Self-responsible and reliable working approach
  • Interest on scientific working and writing a dissertation thesis
  • Friendly and team oriented personality

Your perspective:

  • You can expect a challenging job in an internationally recognized and highly motivated team

Research Topics

  • Biomechanical characterization and FEA simulations in the field of endochondral ossification for bone regeneration
  • Biomechanical investigation of the degradation behavior and FEA simulation in the field of biodegradable magnesium alloys for implants

 

The Karl Landsteiner University of Health Sciences is dedicated to achieving a balanced mix of male and female academic and non-academic staff. Consequently, applications from female candidates are particularly welcome. The minimum gross salary for this position is € 2,045. Overpayment based on the internal salary structure and individual qualifications and experience is possible.

 

Applications should include a motivation letter, curriculum vitae, and credentials and should be mailed by 19. November 2017 to Ms. Christina Schwaiger of the Karl Landsteiner University of Health Sciences,

Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria (bewerbung@kl.ac.at).

The division of biomechanics is constantly looking for pre-doc candidates. Therefore, we also accept unsolicited applications after the deadline.

Research Assistant (Postdoc) position @ University of Portsmouth in bone regeneration

The School of Engineering is seeking to appoint a research assistant (RA) to contribute to the project “Development of first in vitro protocol for bone formation from osteoregenerative biomaterials”, resulting from a collaborative effort between two research centres at the University of Portsmouth (Zeiss Global Centre: http://www.port.ac.uk/school-of-engineering/zeiss-global-centre/ and Biomaterials and Drug Delivery: http://www.port.ac.uk/school-of-pharmacy-and-biomedical-sciences/research/biomaterials-and-drug-delivery/), one at the University of Southampton (Centre for Human Development, Stem Cells and Regeneration: https://www.southampton.ac.uk/chdscr/about/academics/richard_oreffo.page) and the  commercial partner CellScale (http://cellscale.com/).

The project aims to develop the first in vitro protocol for bone regeneration induced by osteoregenerative biomaterials. This will be achieved through investigation of the relationship between the mechanical characteristics of the employed biomaterials and their ability to produce new bone in a biological environment. The research will provide a better understanding of bone formation when simulated physiological loading is applied, resulting in the development of optimised bone repair materials. In addition, correlative imaging combining confocal microscopy, x-ray microscopy and mechanical testing will ensure in-depth knowledge of the entire transition from cell activity to regenerated bone quality. Overall, the project will provide an initial platform aiming at substituting animal studies in the next future and representing a breakthrough methodological tool for the development of new bone treatments.

The successful candidate should have a strong background in at least two of the following areas: bioengineering, mechanobiology, x-ray/confocal microscopy, mechanical testing and biomaterial formulation. The RA will work in a dynamic environment and benefit from the existing collaborative research between partners.

The post is based at the School of Engineering, University of Portsmouth, with the appointment effective from 2nd January 2018, or as soon as possible after offer. For informal enquiries about the project please contact Dr Gianluca Tozzi at gianluca.tozzi@port.ac.uk or phone +44 (0)23 9284 2514.

Applications should be submitted via the online application system at https://port.engageats.co.uk by the closing date. It is the policy of the University to only accept applications submitted using the University’s online application system.

We welcome applications from all qualified applicants, but applications are particularly encouraged from traditionally under-represented groups in science and engineering. The University of Portsmouth holds an Athena Swan bronze award and is committed to introduce organisational and cultural practices that promote gender equality and create a better working environment for men and women.

For detailed information about the vacancy, please select this link:ZZ004184 – Research Assistant.docx

PhD position with focus on muscle and tendon adaptation in youth athletes, Berlin, Germany

The Berlin School of Movement Science (BSMS), graduate school of the Humboldt-Universität zu Berlin, is offering a

PhD position with focus on muscle and tendon adaptation in youth athletes

for a period of 3 (4) years hosted at the Department of Training and Movement Sciences of the same university starting in January 2018.

Project description
The purpose of the research project focuses on the adaptation of muscle and tendon in youth athletes. In young, growing athletes, the development of muscle and tendon tissue is influenced both by maturation and mechanical loading. Recent evidence suggests that the interaction of these two driving stimuli could increase increased the risk of developing imbalances between the strength capacity of muscles during adolescence. However, to date no information is available on the effect of maturation and training in prepubertal children. Therefore, it is important to deepen our understanding of muscle and tendon adaptation during prepubertal maturation, not only with regard to the properties of the muscle-tendon unit as a determinant of sports performance, but also in respect of injury prevention.

The project aims to determine the development of muscle strength and architecture, and tendon mechanical properties of the plantar flexor and knee extensor muscle-tendon unit in prepubertal athletes and untrained children. Joint moments will be determined using dynamometry, inverse dynamics and electromyography, while muscle architecture and tendon elongation will be assessed using ultrasonography.

We are looking for a PhD candidate who is interested in muscle and tendon biomechanics and the development of the musculotendinous system.

Qualifications
– Candidates should hold an MSc or equivalent in Sports Science, Biomechanics, Engineering, Biology or Medical Sciences.
– A very good biomechanical background, together with direct experience in dynamometry and ultrasonography.
– Previous work human muscle architecture and tendon biomechanics in vivo will
constitute an important reason for preference.
– Strong experience in the use of programming languages such as R or MATLAB are desired.
– Very good knowledge of the English language in speaking and writing is required.

Eligibility
– With the beginning of the scholarship the Master or equivalent studies must be completed.
– The latest degree may not date back longer than 6 years.
– At the time of the nomination the candidate may not be in Germany for more than 15 months.
– During the scholarship period, staying abroad is limited to 9 months in total and no longer than 3 months per year.

The position is funded with a DAAD scholarship (Graduate School Scholarship Programme) and it includes:
– Monthly scholarship of 1000.00 €.
– Health, accident and liability insurance.
– Funding of a German language course (2, 4 or 6 months).

Application procedure
The application can only be submitted electronically. It should be written in English and must contain the following:
– Letter of motivation
– Detailed curriculum vitae
– Letter of recommendation by two university professors from the home university, issued during the last 2 years (see the DAAD form attached)
– Copies of certificates or copies of translated documents:
o Copy of the school leaving certificate qualifying for admission to higher education in your own country
o Copies of certificates of annual examinations taken at the home university (transcripts of records)
o Copies of certificates of any academic degrees or advanced qualifications showing grades and explain the home’s grading system

– Certificates of internships (when available)
– The master thesis (or equivalent) and any publications or manuscripts

Contact information for this position
Dr. Falk Mersmann (falk.mersmann@hu-berlin.de, +49 (0) 30 2093 46010)
We invite you to apply before the 31st October 2017. Applications must be submitted as one pdf file containing all materials to be given consideration. Please send your application document via email to: falk.mersmann@hu-berlin.de

The Department of Training and Movement Sciences at the Humboldt-Universität zu Berlin provides basic and applied research in the areas of training and movement sciences as well as biomechanics. Our main research fields include adaptation mechanisms of mechanical and morphological properties of muscles and tendons, plasticity of movement control and interaction between the neuronal and musculoskeletal systems in order to increase human performance and improve life quality.

PhD position with focus on the human neuromuscular function, Berlin, Germany

The Berlin School of Movement Science (BSMS), graduate school of the Humboldt-Universität zu Berlin, is offering a

PhD position with focus on the human neuromuscular function during perturbed movement

for a period of 3 (4) years hosted at the Department of Training and Movement Sciences of the same university starting in January 2018.

Project description

The purpose of the research project focuses on the neural control of the lower limb muscle-tendon unit function during perturbed motion in humans. According to daily life situations,

perturbation paradigms may be continuous and/or acute as well as unexpected and/or predictable. Different perturbations will be induced electro-mechanically by drops in surface height during contact phases of cyclic locomotion and acyclic movements (e.g. jumping) to challenge the system in different configurations of loading and muscle intrinsic properties (force-length-velocity relationship).

To investigate how the central nervous system organizes and uses specific muscle activation patterns (the so-called muscle synergies) to control the muscle-tendon unit behaviour and, thus, global stability, three techniques will be used. First, the electromyographic activity of relevant lower limb muscles will be measured and using a non-negative matrix factorization algorithm the muscle synergies will be extracted. Second, ultrasonography and kinematic analysis will be combined to assess vastus lateralis and gastrocnemius medialis muscle fascicles as well as respective muscle-tendon unit length. Lastly, the local dynamic stability will be estimated using the concept of the Lyapunov exponents.

We are looking for a PhD candidate interested in investigating the neurophysiological and muscle mechanical aspects underlying human motor control of perturbed movements.

Qualifications
– Candidates should hold an MSc or equivalent in Biomechanics, Engineering,
Mathematics or Sport Engineering
– A very good mathematics and physics background, together with direct experience in
signal processing are required.
– Previous work on measurements of surface electromyographic activity,
muscle/tendon ultrasonography and/or dynamic stability will constitute an important reason for preference.
– Strong experience in the use of programming languages such as R or MATLAB.
– Very good knowledge of the English language in speaking and writing is required.

Eligibility
– With the beginning of the scholarship the Master or equivalent studies must be
completed.
– The latest degree may not date back longer than 6 years.
– At the time of the nomination the candidate may not be in Germany for more than 15 months.
– During the scholarship period, staying abroad is limited to 9 months in total and no longer than 3 months per year.

The position is funded with a DAAD scholarship (Graduate School Scholarship Programme) and it includes:
– Monthly scholarship of 1000.00 €.
– Health, accident and liability insurance.
– Funding of a German language course (2, 4 or 6 months).

Application procedure
The application can only be submitted electronically. It should be written in English and must contain the following:
– Letter of motivation
– Detailed curriculum vitae
– Letter of recommendation by two university professors from the home university, issued during the last 2 years (see the DAAD form attached)
– Copies of certificates or copies of translated documents:

o Copy of the school leaving certificate qualifying for admission to higher
education in your own country
o Copies of certificates of annual examinations taken at the home university
(transcripts of records)
o Copies of certificates of any academic degrees or advanced qualifications
showing grades and explain the home’s grading system

– Certificates of internships (when available)
– The master thesis (or equivalent) and any publications or manuscripts

Contact information for this position
Dr. Sebastian Bohm (sebastian.bohm (at) hu-berlin.de, +49 (0) 30 2093 46010)
We invite you to apply before the 31st October 2017. Applications must be submitted as one pdf file containing all materials to be given consideration. Please send your application document via email to: sebastian.bohm (at) hu-berlin.de

The Department of Training and Movement Sciences at the Humboldt-Universität zu Berlin provides basic and applied research in the areas of training and movement sciences as well as biomechanics. Our main research fields include adaptation mechanisms of mechanical and morphological properties of muscles and tendons, plasticity of movement control and interaction between the neuronal and musculoskeletal systems in order to increase human performance and improve life quality.

Postdoctoral Research Associate in Bone and Joint Biomechanics, Sheffield, UK

Job Title:
Postdoctoral Research Associate in Bone and Joint Biomechanics

Description:
A PostDoc position for a highly motivated research scientist to work on a study
funded by the National Centre for Replacement, Refinement and Reduction
of the usage of animals in research (NC3Rs).
The project aims to enhance the assessment of bone and joint properties in
preclinical studies (mouse models), by combining longitudinal high-resolution
imaging, advanced image processing and computational modelling to non-
invasively measure bone strength from the in vivo images. In this project the
post-holder will create and validate computational models for the prediction of
bone strength at each time point in mice scanned with in vivo microCT that allows for high-resolution scans of the mice tibia. Moreover, the post-holder will adapt our protocols to study in details bone changes in the mouse knee to evaluate the effect of OA. Finally, they will be involved in the design and creation of an online service that measures automatically the bone properties in different portions of the tibia and that can be used worldwide by other researchers.
The post will be based at the Insigneo Institute for In silico Medicine and the
Mellanby Centre for Bone Research in Sheffield. Applicants should hold a PhD in
Engineering, Physics or related disciplines (or being close to submit), be familiar
with experimental, imaging, image processing and computational modelling
techniques for assessment of bone properties. Willingness to use the developed
skills towards the 3Rs is essential. The post is full time for 30 months. The post
holder will report to Dr Enrico Dall’Ara.

Contact: e.dallara@sheffield.ac.uk
Start position: 1 st Dec 2017
Duration: 30 months
Closing application: 24 th October 2017

Link Application (use in Keywords: “UOS017290”):
https://jobs.shef.ac.uk/sap/bc/webdynpro/sap/hrrcf_a_unreg_job_search?sap-client=400&sap-syscmd=nocookie&sap-wd-configId=ZHRRCF_A_UNREG_JOB_SEARCH&sap-
ie=edge&utm_source=university%20website&utm_medium=link&utm_content=jobs&utm_campaign=jobs-link#

Salary: Grade 7; £30,175 to £38,183 per annum

PhD in computational spine biomechanics and ASD patient stratification @ DTIC-UPF, Barcelona, Spain

Host institution and work environment

The Universitat Pompeu Fabra (UPF) was established in 1990 in Barcelona as a public university with a strong dedication to excellence in research and teaching. It is the 1st Spanish university in teaching and research performance (U-Ranking, BBVA Foundation & Ivie, 2016), in terms of quality output, normalized impact and percentage of collaborative papers with international institutions (Scimago 2014).

DTIC is the UPF ICT department. It was created in 2009 and has an important track record of active participation in international projects (66 FP7 and 20 H2020 projects up to now). DTIC is the Spanish university department with the largest number of ERC grants (19 from FP7 on), and it has been awarded the “Maria de Maeztu” excellence award by the Spanish government for the quality and relevance of its pioneering scientific research.

The proposed PhD will take place at DTIC as a collaborative project between the Biomechanics and Mechanobiology and the Medical Imaging Analysis research areas of BCN MedTech. BCN MedTech (http://bcn-medtech.upf.edu/) is the Barcelona Centre for New Medical Technologies at UPF. Its focus is on biomedical integrative research, including mathematical and computational models, algorithms and systems for computer-aided diagnosis and treatment of health problems. It has a team of 60 full time researchers working on computational simulations, medical image analyses, signal processing, machine learning, computer-assisted surgery and biomedical electronics.

 

The project

The successful candidate will work on the modelling of adult spine deformity (ASD), focussing on patient-specific modelling techniques and intelligent analyses of biomechanical simulation outcomes in ASD patient cohorts. The project is a collaboration among UPF, the Instituto Ortopedico Galeazzi (Milan, Italy), the Hospital del Mar (Barcelona, Spain) and the Hospital de Vall d’Hebron (Barcelona, Spain). It will combine patient data with statistical shape modelling, finite element analyses and machine learning techniques to infer on the physical rationales that lay behind current clinical classifications of ASD patients.

The PhD thesis will be funded full time for a period of four years and will be co-supervised by Dr Jérôme Noailly and Prof Miguel Ángel González Ballester (UPF), and by Dr Fabio Galbusera (Instituto Ortopedico Galeazzi).

 

Requirements and application

Candidates are expected to have a Bachelor and Master in Physics, Applied mathematics, Biomedical engineering or in related fields. Proficient English is necessary. Applications should be sent by email to Dr Jérôme Noailly (jerome.noailly@upf.edu) and to Dr Fabio Galbusera (fabio.galbusera@grupposandonato.it) and should include a full CV, letter of motivation, Bachelor and Master academic transcripts and the contact of two referees.

PhD Position at EMPA (CH) in Biomechanics

Empa – the place where innovation starts
Empa is the research institute for materials science and technology of the ETH Domain and conducts cutting-edge research for the benefit of industry and the well-being of society.

Our Laboratory for Mechanics of Materials and Nanostructures is looking for a PhD Student in the field of Biomechanics

Your Tasks
You will work on a research project funded by the Swiss National Science Foundation that will contribute to the understanding of deformation and failure of bone on the microscale and its impact on whole bone strength. You will be enrolled in a doctoral program at ETH Zürich and exploit the micromechanical yield- and postyield properties of bone on the level of the extracellular matrix. During the course of the project, you will be involved in sample preparation, micromechanical experiments at different environmental conditions, electron microscopic imaging, Raman spectroscopy, as well as data analysis and interpretation.

The project is initiated in cooperation with Prof. Edoardo Mazza of the Institute of Mechanical Systems of ETH Zürich.

Your Profile
You must hold a Master’s or an equivalent Degree in Mechanical Engineering or Materials Science. A high motivation to work at the leading edge of measurement science and to work in international, multidisciplinary research teams is essential. Knowledge of English (oral and written) is important and knowledge of German would be an advantage. Experience in nanomechanical testing techniques like nanoindentation, electron microscopy based techniques as well as programming (e.g. Matlab, Labview, Python) is desirable.

For further information about the position please contact Dr. Jakob Schwiedrzik, jakob.schwiedrzik@empa.ch or Dr. Johann Michler, johann.Michler@empa.ch and visit our website www.empa.ch/web/s206 and Empa-Video

We look forward to receiving your online application including a letter of motivation, CV, diplomas with transcript and contact details of two referees. Please upload the requested documents through our webpage https://apply.refline.ch/673276/0889/pub/1/index.html.
Applications via email will not be considered.

PDRA in Bioreactor Technology, University of Oxford

We are seeking a full-time Postdoctoral Research Assistant to join the Oxford Mechanobiology Group at the Department of Engineering Science, University of Oxford. We have developed and filed a patent on an electromagnetically actuated mechanical bioreactor for studying cultured tissue, and have won impact funding to commercialize this concept with applications in tissue engineering, drug discovery and research instruments. You will be responsible for design and development of miniaturized single and multi-chamber commercial demonstrators of the technology and will need extensive experience of practical project work in electromagnetic actuation, a strong interest in applications in bioreactor technology, and a passion for commercialization.

Click here for further details

Four 12-months PDRA positions at the University of Sheffield

There are 4 exciting PDRA positions at the University of Sheffield starting from September 2017.

The candidates will work in a multidisciplinary environment within two projects funded by the Engineering and Physical Sciences Research Council (EPSRC).

PROJECT1

Job Title: Post Doctoral Research Associate in Bone Biomechanics

Project Title: A 3D realistic FE model of the growing mouse knee joint

Related Project: MULTISIM (PI: Prof Damien Lacroix; http://multisim-insigneo.org/)

Description:

The goal of this project is to generate a 3D realistic finite element (FE) model of the growing mouse knee joint through in vivo and ex vivo micro-Computed Tomography (μCT) imaging.

The post holder will use a combination of contrast enhanced µCT, well-established staining methods, novel elastic registration algorithms, and adaptive biomechanical simulations to explore the relation between mechanics and biology on the process of knee joint growth in mice. In addition, a novel mechanoregulation algorithm for bone and cartilage growth will be explored by means of constrained optimisation techniques.

Supervisors: Dr Mario Giorgi, Dr Enrico Dall’Ara

Contact: m.giorgi@sheffield.ac.uk

Start position: Sep 2017

Duration: 12 months

Closing application: 26 May 2017

Link Application: https://jobs.shef.ac.uk/sap/bc/webdy…BC%2fUR%2fuos#

Salary: Grade 7, £30.175 to £38.183 per annum

PROJECT2

Job Title: Postdoctoral Research Associate in Cell and Tissue Multiscale Modelling

Project Title: A Multiscale Bone Remodelling Predictor for Discovering Innovative Therapies to Osteoporosis

Related Project: MULTISIM (PI: Prof Damien Lacroix; http://multisim-insigneo.org/)

Description:

The goal is to expand an in-house agent-based model (ABM) simulating cellular activity during osteogenesis, and to couple this model with a finite element (FE) model of bone tissue.

The post holder will work towards developing dynamic multi-scale bone remodelling units in the tibia responding to biomechanical stimulations under physiological and pathological conditions. A combined agent-based model (ABM) and finite element (FE) framework will be utilised to simulate signalling networks, including that of the parathyroid hormone (PTH), and monitor their influence on cell-cell interaction and emergent behaviour. The models will be integrated into a hypermodelling framework that consists of several sub-models at various scales (cell, tissue, organ, body) so that an overall musculoskeletal model can be generated

Supervisors: Dr Aban Shuaib and Dr Enrico Dall’Ara

Contact: aban.shuaib@sheffield.ac.uk

Start position: Sep 2017

Duration: 12 months

Closing application: 26 May 2017

Link Application:

https://jobs.shef.ac.uk/sap/bc/webdynpro/sap/hrrcf_a_posting_apply?PARAM=cG9zdF9pbnN0X2d1aWQ9MzMwNjJBRkQ4MDQ5MUVENzhERTU0MDBFREQ1NDgyMjkmY2FuZF90eXBlPUVYVA%3d%3d&sap-client=400&sap-language=EN&sap-accessibility=X&sap-ep-themeroot=%2fSAP%2fPUBLIC%2fBC%2fUR%2fuos#

Salary:

Grade 7 £30,175 to £38,183 per annum

PROJECT3

Job Title: Post-doctoral Research Associate in Multiscale Model Sensitivity Analysis

Project Title: A cost-weighted network analysis to discover clinically feasible and accurate multiscale hypermodels

Related Project: MULTISIM (PI: Prof Damien Lacroix; http://multisim-insigneo.org/)

Description: The aim of the project is to systematically analyse and develop the use of Bayesian inference in a multiscale hypermodel that predicts ageing-related loss of bone strength.

The post-holder will create a cost-weighted network representation of the multiscale model design space applied to osteoporotic loss of bone strength. Surrogate data sources will be identified and linked to the network within Bayesian inference context. Sensitivity analysis and uncertainty propagation analysis of the enriched network will be performed to discover the lowest cost hypermodel.

Supervisors: Dr Pinaki Bhattacharya, Prof Marco Viceconti

Contact: p.bhattacharya@sheffield.ac.uk

Start position: Sep 2017

Duration: 12 months

Closing application: 26 May 2017

Link Application: https://jobs.shef.ac.uk/sap/bc/webdynpro/sap/hrrcf_a_posting_apply?PARAM=cG9zdF9pbnN0X2d1aWQ9MzMwNjJBRkQ4MDQ5MUVFNzhERTAyN0JEQzQ2MjUyOEImY2FuZF90eXBlPUVYVA%3D%3D&sap-client=400&sap-language=EN&sap-accessibility=X&sap-ep-themeroot=/SAP/PUBLIC/BC/UR/uos#

Salary: (Grade 7) £30,175 to £38,183 per annum

PROJECT4

Job Title: Post Doctoral Research Associate (Biomechanics of OA)

Project Title: Novel Assessment of the Osteoarthritic Hip Subchondral Bone: a Combined Experimental and Computational Investigation

Related Project: OABONE (PI Dr Enrico Dall’Ara; http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/P015778/1)

Description: The goal of this project is to use state of the art experimental, imaging and computational techniques to measure how the subchondral bone of the femoral head of osteoarthritic hips deforms under loading.

The post holder will design in situ mechanical testing for testing human femoral heads, use micro computed tomography (microCT) for acquiring the bone microstructure, perform digital volume correlation (DVC) analyses to measure the three dimensional deformation of the bones and generate micro-finite element models to estimate the deformation of the same bones under different loading scenarios.

Supervisors: Dr Enrico Dall’Ara

Contact: e.dallara@sheffield.ac.uk

Start position: Sep 2017

Duration: 12 months

Closing application: 05/06/17

Link Application: https://goo.gl/N43Ycj

Salary: £30,175 – £38,183 per annum.