ESBiomech23 Congress in Maastricht

Postdoc vacancy in microstructural imaging of blood vessels and tissue biomechanics @Erasmus MC / TU Delft.

Interested in diving into the fascinating world of microstructural imaging of blood vessels and linking this to tissue biomechanics? There is an open position for a post-doctoral researcher in the Biomechanics Group at Erasmus MC / TU Delft.

Application links and more info:

PhD vacancy in the field of experimental vascular biomechanics @Erasmus MC / TU Delft

Interested in diving into the fascinating world of vascular biomechanics and imaging? There is an open position for a PhD candidate in the field of experimental vascular biomechanics in the Biomechanics Group at Erasmus MC / TU Delft.

Application links and more info:

PhD vacancy on the effects of footwear on the biomechanics of an arthritic foot @Mines Saint-Etiennes (IMT)

The INSERM U1059 Sainbiose laboratory is looking for a PhD student in the framework of a new French National Research Agency (ANR) project “Insole Optimization for Rheumatoid Arthritis patients” (coll. CHU Saint-Etienne, INRIA Alpes).

Rheumatoid arthritis (RA) is the most common chronic inflammatory joint disease, with a prevalence of about 0.5%. RA is a peripheral polyarthritis that affects the hands and feet: foot function is compromised, which is accompanied by changes in plantar pressures and gait disorders that have a strong impact on daily activities. Foot pain and disability can be reduced with customized foot orthotics and therapeutic footwear. The mechanisms involved in this treatment lack methodological evaluation. In particular, the design of the insoles and their relationship to internal effects such as joint pressure and soft tissue deformities have not been studied due to the difficult nature of such studies in a clinical environment.
From a medical point of view, the INORA project aims to understand, through patient-specific numerical biomechanical models, the mechanisms of action of shoes and orthopedic insoles in order to propose a well-founded design methodology. From a more fundamental point of view, these models will allow the discovery of the mechanical determinants of pain relief, which will promote the long-term well-being of patients.

The thesis project will focus on the mechanical finite element modeling of a moving foot, and then the optimization of the medical device (sole, shoe) in order to minimize the stresses in the critical pain areas. We are looking for a (bio) mechanical engineer with good numerical skills, interested in health applications and able to integrate in a multi-disciplinary research team.

More info:

Master Thesis in Biomechanics @Julius Wolff Institute, Charité


The Julius Wolff Institute is within the university structure of the Charité – Universitätsmedizin Berlin. As a research institute, we run applications and basic research in the fields of orthopedics and trauma surgery. Our main research field is the regeneration and biomechanics of the musculoskeletal system.
Mandibular reconstruction after tumor resection is a challenging procedure usually performed using an autologous vascularized bone graft fixated with reconstruction plates (Figure 1). However, the non-physiological biomechanical environment induced at the injured site and donor site morbidity can negatively impact the healing outcome and patient quality of life. Tissue engineering allows exploring alternative solutions to traditional bone grafts such as scaffolds, i.e. structures able to support the formation of new functional tissues. However, if scaffolds can biomechanically support the bone healing process in mandibular reconstruction remains to be investigated.
Your Responsibilities
In this context, the Julius Wolff Institute is looking for a highly motivated individual for an internship or Master thesis. You will develop finite element models of reconstructed mandibles and design a scaffold to investigate its biomechanical impact on the healing outcome. The student will also simulate several biting tasks, design implant fixation and study their effect on the biomechanical environment within the mandibular defect. The project is part of a close collaboration with clinical partners.

More information:

3 postdoctoral job offers in Computational Bone mechanics @UPF, Barcelona

We are offering three postdoctoral positions in the area of Biomechanics & Mechanobiology at BCN MedTech, Department of Information and Communication Technologies, University Pompeu Fabra, Spain, to work in computational biomechanics applied to fragile bone fracture prediction in clinical cohorts:

  • Data science & surrogate modelling (1.5 years, full time): Junior postdoctoral researcher with expertise in machine learning applied to biomedical engineering: – Deadline March 7th 2023
  • Open-source finite element code development & implementation (2 years, full time): Postdoctoral researcher with expertise in open-source finite element software and computational continuum mechanics: – Deadline March7th, 2023
  • Patient-Specific finite element modelling and computational bone biomechanics (Junior leader, 2.5 years, full time): Senior postdoctoral researcher with at least two years of postdoctoral research experience in bone finite element analysis: – Deadline: March 7th, 2023

Newton Fellowship in computational cardiovascular biomechanics

Newton International Fellowships are prestigious postdoctoral fellowships for researchers who want to work in the UK. The scheme is accepting applications now with a deadline of 28th March 2023. The fellowship provides three years of research funding, and only those with a PhD from outside of the UK are eligible. More details and eligibility criteria are available at

Do you have background in computational tissue biomechanics? Are you interested in cardiovascular systems and the above scheme? If so, check our Computational Biomechanics Research Group page or my staff page for more information on our research. We would be happy to host excellent researchers with relevant background and interests. Email me at if you would like to discuss this fellowship opportunity.

PhD Position on Computational modeling of fibrotic scarring @Maastricht University

Regenerative medicine (RM) holds the promise to cure many of what are now chronic patients, restoring health rather than protracting decline, bettering the lives of millions and at the same time preventing lifelong, expensive care processes: cure instead of care. The scientific community has made large steps in this direction over the past decade, however our understanding of the fundamentals of cell, tissue and organ regeneration and of how to stimulate and guide this with intelligent biomaterials in the human body is still in its infancy. Materials properties such as elasticity, topography, hydrophobicity, and porosity have all been shown to influence cell fate, and the introduction of high-throughput combinatorial approaches is expediting research. However, in order to improve the design of synthetic biomaterials, it is crucial to understand the physiological cell-biomaterial interactions and how these influence the tissue remodeling process. This research project aims to use in silico models to simulate physiological and fibrotic cell-ECM interactions, including dynamic tissue remodeling through ECM deposition and alignment, to improve our fundamental understanding thereof and use the obtained knowledge to design improved synthetic matrices.  

Project description:

  • Computational modeling of tissue remodeling to inform the design of synthetic matrices
  • Multiscale modeling: coupling ABM to FEM to investigate the role of dynamic tissue compositions and alignment
  • Parameter optimization and sensitivity analysis
  • Analysis and integration of various in vitro/in vivo data for model calibration

More information:

Post-Doc in Clinical-related Musculoskeletal Biomechanics @ Krems, Austria


The Karl Landsteiner University of Health Sciences (KL) is part of an academic and research community located at the Campus Krems, and includes a network of comprising teaching hospitals in St. Pölten, Krems and Tulln. The university offers degree programs in Human Medicine and Psychology and are tailored to the requirements of the Bologna model, opening the door to new, cutting-edge health professions. KL is committed to raising its profile in specific areas of biomedicine, biomedical engineering, and biopsychosocial sciences by entering into strategic academic and research partnerships with other institutions.


  • Independent experimental research
  • activities in the field of musculoskeletal biomechanics
  • Publication activities and writing of applications for external funding Teaching and support in administrative tasks
  • Supervision of Bachelor, Master and
  • PhD students Administration and 1aintenance of the laboratory infrastructure
  • Support of the laboratory head


  • Completion of a suitable doctorate (e.g. mechanical engineering, physics, biomedical engineering, …)
  • In-depth knowledge in biomechanical testing (material and/or implant testing incl. programming of measurement data analysis)
  • Appropriate track record of publications in scientific journals as well as conference contributions.
  • Experience with clinic-related research and imaging techniques (CT or MRI) would be an advantage
  • Good German (or willingness to learn German in the short term) and very good English skills, both written and spoken Process-oriented, accurate, structured way of working with a strong ability to prioritize
  • Open, resilient and flexible personality with a professional attitude


You can expect a challenging job in an internationally visible and highly motivated team -we offer flexible working hours, home office options, a paid lunch break, health care and many other benefits . The Karl Landsteiner University of Health Sciences is dedicated to achieving a balanced mix of male and female academic and non-academic staff. Consequently, applications from female candidates are particularly encouraged. People with disabilities who meet the required qualification criteria are expressly invited to apply and are given special consideration. The minimum classification is € 3,700 (40 hrs) gross per month. Readiness for overpayment exists with appropriate experience and qualification. Fixed-term contract for 2 years, possibility of extension (path to permanency / tenure) in case of appropriate performance.


Applications should include a motivation letter, curriculum vitae and credentials and should be mailed by 22 nd of Feburary 2023 referring jobnumber “2301” to Ms. Christina Schwaiger to

Post-doc position in Computational Biomechanics @ University of Bologna

The specific goal of this post-doctoral research position is the further development, deployment, and clinical application of clinical digital twins for risk-based stratification of patients affected by musculoskeletal dysmetabolism (osteopenia and sarcopenia). This is the context of Heal Italia projects, a national research project funded by the NextGenerationEU Recovery Plan. The project aims to apply precision medicine approaches by developing risk-based stratification algorithms and providing scientific open-access evidence to health policymakers.

The post-doc is expected to translate existing digital twin technologies developed in other projects into use in specific clinical studies on osteopenia and sarcopenia. This will require some adaptations to the modelling technology, their deployment to appropriate infrastructures, and their use to conduct specific clinical studies where the models’ predictions are used for risk-based stratification.

The ideal candidate would have these qualifications:

  • Good written and spoken English.
  • Documented experience in patient-specific biomechanical or mechanobiological modelling.
  • Experience with finite element analysis and/or multi-body dynamics in biomechanics.
  • PhD in Engineering, Physics, Movement Science, or Computer Science, not strictly required though.


The selected post-doc will mainly work on:

  • Develop further computational biomechanics patient-specific models.
  • Deploy them on dedicated infrastructures that enable their use in clinical studies.
  • Run clinical studies based on these Clinical Digital Twins.

The candidate will have the opportunity to work in a multidisciplinary team coordinated by Prof. Marco Viceconti, and in collaboration with a large national consortium.


More info and how to apply here:

The deadline for applications is 06 February 2023.

The research will be conducted both at the University of Bologna and at the Rizzoli Orthopedic Institute in Bologna.

Further information:

If you are interested or want more information, please contact Alessandra Aldieri:

PhD position on Computational and Experimental Analysis of the Parametric Left Atrial Appendage to Assess the Risk of Thrombus Formation @ UCL

EPSRC DTP PhD studentship

Duration: 4 years of funding

Project description:

Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, affects 9% for individuals over 65 years, and it is the leading cause of thromboembolic events, such as stroke and vascular dementia. 90% of thrombi responsible for thromboembolic events during AF originate in the left atrial appendage (LAA), a protrusion of the left atrium (LA).

The project aims at analyzing different morphologies of the LA+LAA district with computational and experimental methods to perform a systematic analysis of the sensitivity of each geometrical parameter (e.g. number/dimension of lobes and trabeculae, orifice shape/dimension) influencing the fluid-dynamics, and therefore thrombus formation.

The objectives are: 1) Creating a generalised parametric Computer Aided Design (CAD) model of the LA+LAA district. 2) Developing Fluid Structure Interaction (FSI) models, imposing physiological and pathological (i.e. AF) conditions, investigating the relations between LA+LAA shape and heamodynamics with the risk of thrombus formation. 3) Manufacturing physical models with optically transparent compliant polymers mimicking LA/LAA tissue distensibility, to perform experimental tests using dyes in a specifically adapted hydro-mechanical pulse duplicator system (ViVitro Systems Inc.) to validate the computational model. The final result will be a practical classification tool supporting clinicians in the stratification of patients at risk of thrombosis, easy to immediately translate into practice.

This project is highly interdisciplinary, involving engineering experimental and computational skills, in constant contact with cardiologists and clinical morphologists, exposing the PhD student to a multidisciplinary engineering approach to tackle a very timely clinical problem. The student will take advantage of a well set-up network of collaborations among different UCL Departments (Mechanical Engineering, Institute of Cardiovascular Science and Institute of Healthcare Engineering) and Clinical Institutions (The Barts Health NHS Trust – the largest Trust in the UK – and UCLH). Applicants should ideally have experience in: • FE/CFD/FSI modelling • Experimental testing • Matlab/Python/C++ programming • Machine learning

Link with info

Link to apply

Corporate members of the ESB:

AMTI force and motion logo
ANSYS logo
Beta CAE logo
BoB Biomechanics logo
Delsys Europe logo
Frontiers publisher logo
Materialise logo
Nobel Biocare logo