ESBiomech24 Congress in Edinburgh

PhD studentship in “Strain Measurement in Osteoarthritic Cartilage (SMOC)”

Applications are invited for a fully-funded three year PhD to commence in October 2019. 

The PhD will be based in the School of Pharmacy and Biomedical Sciences and will be supervised by Professor Gordon Blunn and Dr Gianluca Tozzi. 

The work on this project will investigate: 
– the strain distribution in normal human articular cartilage obtained from bone cancer specimens
– the strain distribution in human OA samples taken from the tibial plateau during total knee replacement 
– the strain distribution in specimens taken at different time points (longitudinal study) from animal models that develop OA 

Project description 


Osteoarthritis (OA) affects over 250 million people worldwide, impacts more than half of the population over the age of 65 and is predicted to increase 7-fold by 2030. Our understanding of the aetiology and 
pathogenesis of OA remains incomplete despite numerous research studies over several decades and treatments have been largely unsuccessful. 

Early OA is associated with early changes in the architecture and volume of subchondral bone, which has led many in the field to think of OA as a disease of the ‘whole joint.’ The focus on bone changes as the initial effector of the osteoarthritic process is influenced by studies proposing how pathogenesis of OA can be attributed to a primary alteration in surrounding bone, which leads to increased strains in the the overlying articular cartilage. This adversely affects chondrocyte function and cartilage matrix loss. This hypothesis is supported by numerous studies which have demonstrated that changes in bone occur very early in the development of OA. However, cartilage and bone both have the capacity to respond to adverse biomechanical signals and, therefore, it is more likely that both tissues undergo structural and functional alterations during the initiation and evolution of OA. The extent, the interrelated effect on bone and cartilage and the precise timing of these changes remains unknown. 

The strain in the subchondral bone and in the cartilage will be investigated using high-resolution 3D X-ray computed tomography (XCT), using both adsorption and phase-contrast imaging. Specimens will be subjected to in situ mechanical loading and imaged at increasing incremental loads. The degree of strain will be determined using digital volume correlation (DVC) and its distribution related to the degree of damage using histology and immunohistochemistry, which will detect the breakdown of the cartilage matrix. 

The University of Portsmouth is uniquely positioned to answer this research question with its state-of-the-art imaging facilities available at the Zeiss Global Centre as well as world-leading experience in digital volume correlation in musculoskeletal research. The project will develop and train a PGR student in the large research area of osteoarthritis, but at the same time will utilise new techniques to address the research question. The student will utilise and develop skills, which could be applied to other aspects of biomedical engineering giving them a number of potential career opportunities after completing the PhD. 

General admissions criteria 


You’ll need a good first degree from an internationally recognised university (minimum second class 
or equivalent, depending on your chosen course) or a Master’s degree in a relevant subject area . In exceptional cases, we may consider equivalent professional experience and/or Qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0. 

How to Apply 

We’d encourage you to contact Professor Gordon Blunn (gordon.blunn@port.ac.uk) to discuss your interest before you apply, quoting the project code. 

When you are ready to apply, you can use our online application form and select ‘Biomedical, Biomolecular and Pharmacy’ as the subject area. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV. Our ‘How to Apply’ page offers further guidance on the PhD application process. 

If you want to be considered for this funded PhD opportunity you must quote project code PHBM4820219 when applying. 

Funding Notes

The bursary is available to UK and EU students only and covers tuition fees and an annual maintenance grant in line with the RCUK rate (£14,777 for 2018/19) for three years.

Two PhD studentships at the ARTORG Center for Biomedical Engineering Research University of Bern, Switzerland

PhD Student in Computational Biomechanics

for a period of three years starting in the spring 2019.

The outstanding candidate will be integrated in a research group in biomechanics combining experimental and computational methods to test original scientific hypotheses and develop new diagnostic methods or medical devices. She/he will work on a research project funded by the Swiss National Science Foundation that will develop a new diagnostic tool for osteoporosis.

The project is initiated in cooperation with the Service for Bone Diseases of the University of Geneva (HUG) as well as the Polyclinic for Osteoporosis of the University Hospital in Bern. The candidate will advise undergraduate students in her/his domain of expertise and may be involved in teaching of biomedical engineering.

The University of Bern aims at increasing the proportion of women in its scientific personnel and explicitly encourages qualified women to apply for this position. The salaries correspond to the ones published by the Swiss National Science Foundation (www.snf.ch) and the academic track is managed by the Graduate School in Cellular and Biomedical Sciences of the University of Bern (www.gcb.unibe.ch).

Please, send your application, including a letter of motivation, complete CV and records before February 28th 2019 to

Prof. Philippe Zysset, Institute for Surgical Technologies & Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern

www.istb.unibe.ch

philippe.zysset@istb.unibe.ch


PhD Student in Medical Image Processing

for a period of three years starting in the spring 2019.

The outstanding candidate will be integrated in a research group in biomechanics combining experimental and computational methods to test original scientific hypotheses and develop new diagnostic methods or medical devices. She/he will work on a research project funded by the Swiss National Science Foundation that will develop a new diagnostic tool for osteoporosis.

The project is initiated in cooperation with the Service for Bone Diseases of the University of Geneva (HUG) as well as the Polyclinic for Osteoporosis of the University Hospital in Bern. The candidate will advise undergraduate students in her/his domain of expertise and may be involved in teaching of biomedical engineering.

The candidate must hold a Master’s Degree in biomedical engineering or related field. A solid background in mathematics and image processing is essential, practice in statistical shape modeling, broad programming skills are necessary and project related experience in biomechanics is advantageous. Strong writing skills in English are indispensable, while knowledge of French or German is desired.

The University of Bern aims at increasing the proportion of women in its scientific personnel and explicitly encourages qualified women to apply for this position. The salaries correspond to the ones published by the Swiss National Science Foundation (www.snf.ch) and the academic track is managed by the Graduate School in Cellular and Biomedical Sciences of the University of Bern (www.gcb.unibe.ch).

Please, send your application, including a letter of motivation, complete CV and records before February 28th 2019 to

Prof. Philippe Zysset, Institute of Surgical Technologies & Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern

www.istb.unibe.ch

philippe.zysset@istb.unibe.ch

Call for Bids hosting ESB 2022

The ESB is inviting proposals for the organization of its annual congress in July 2022. If you are interested in hosting and organizing ESB2022, please read the ESB 2022 Bid rules for details.

Bids should be sent to prof. David Mitton (david.mitton@ifsttar.fr), Chair of the Meetings Committee. He can also be contacted for further information.

The deadline for submitting your bid for ESB2022 is 31st March 2019.

Simpleware Software Release O-2018.12 Out

The latest version of Simpleware software is out now. It includes many exciting new features and performance improvements. New in Version O-2018.12

  • Improved Usability
  • Better Segmentation
  • Enhanced Dataset Processing

Synopsys will be running webinars on the new release January 16, 2019, and will also be hosting workshops in the UK on January23rd,2019, and in the U.S. on February 12, 2019. For more details visit this page or contact simpleware@synopsys.com.

PhD position in spinal implant design

This PhD project will focus on materials development and implant design for spinal fusion. Numerical models will be used to design and structurally optimize a bioactive, osteoinductive spinal fusion device based on a combination of ceramics and metals. 3D printing will be used to produce prototypes for initial mechanical evaluation of the developed implants in an ex vivo model, guided by standards on intervertebral devices. The project will be performed mainly at Uppsala University, and in collaboration with OssDsign AB. Main supervision will be undertaken by Prof. Cecilia Persson (UU), with co-supervision from Prof. Per Isaksson (Solid mechanics, UU) and Dr Kajsa Björklund (OssDsign AB). The position is part of a large EU-funded Marie Sklodowska Curie Innovative Training Network, NU-SPINE (nu-spine.eu) and includes secondments at OssDsign AB, Sweden (PM10-12) and University of Leeds, UK (PM20-23).

More details: https://www.uu.se/en/about-uu/join-us/details/?positionId=239509

ESBiomech Newsletter Autumn 2018

We are pleased to present our 2018 Autumn Newsletter with the latest ESB news, reports from ESB conference and honouring award winning researchers, and updates from our corporate members.

Please contact us with ideas of items you would like to see on our website and newsletter and these will be considered as the society continues to expand. If you do not wish to receive mailings including the newsletter and other updates from the European Society of Biomechanics you can update your settings in the membership section of the website here:

I hope you find the newsletter useful and informative.

Dieter Pahr – publication.chair@esbiomech.org

PhD in Multiscale simulations for translational explorations of emphysema

POSITION DESCRIPTION

-Research Project / Research Group Description:

The proposed PhD will involve the Biomechanics and Mechanobiology, the Image analysis and the machine learning laboratories of the BCN MedTech research unit at the University Pompeu Fabra (UPF). BCN MedTech focuses on biomedical integrative research, including mathematical and computational models, algorithms and systems for computer-aided diagnosis and treatment of health problems. It has 60 full time researchers and belongs to the Department of Information and Communication Technologies, awarded with the prestigious label of Unit of Excellence through the Spanish Maria de Maeztu Strategic Research Program.
The project focusses on multiscale modelling and simulations to identify early biomarker candidates in emphysema. Emphysema is the most harming form of chronic obstructive pulmonary diseases (COPD) and its current diagnostic is usually confirmed at a relatively advanced stage of disease progression, through computed tomography image analyses. In order to cope with this limitation and support the early prevention of emphysema progression, we propose a multiscale modelling approach that combines image analysis, tissue finite element modelling and cell-cytokines agent-based modelling. Such approach has already allowed successful simulation of emphysema progression, as a response to cigarette smoking [1]. The proposed PhD will push forward this research towards the use of disease mechanism models for the identification of early emphysema biomarkers.

-Job position description:

Specifically, the work will include
• The development and implementation of advanced constitutive equations for the lung parenchyma
• The systematic evaluation of computational networks to simulate the dynamics of the biological processes that control the turnover of parenchyma macromolecules
• The meta-analysis of patient data and multiscale simulation results
The grant is supported by a European Marie Sklodowska-Curie co-fund and provides a competitive gross annual salary of 34.800 € during a period of three years to attract young talents. This salary is supplemented by a research allowance of 3.564 € per year, and a PhD award of 7.500 € will be granted if the PhD thesis is submitted within 6 months after the end of the fellowship.

The successful candidate will work in the Poble Nou Campus of UPF, in the beautiful town of Barcelona, in collaboration with the Barcelona Super Computing center for the multiscale simulations, and with ISGlobal for epidemiological data.

Applicants are expected to have a bachelor’s and master’s degrees in biomedical engineering, physics, applied mathematics or any related fields. They should be motivated to work in an international environment and have good communication skills. Experience in Python programming is welcome and proficient English is mandatory.

– Deadline for application: February 6th 2019

Apply here: https://www.lacaixafellowships.org/index.aspx

For any inquiry, please contact Dr Jerome Noailly: Jerome.noailly@upf.edu

New post @Marco Viceconti’s group in Bologna: dissemination, communication, and community engagement on in silico medicine

In the frame of the Strituvad project we are opening a new position for communication officer.  The position is initially for 12 months, but can be extended for additional two.

The aim of this research contract is the creation of a community of practice around the emerging applications of the so-called in silico medicine, with particular reference to in silico trials, where modelling and simulation technologies are used for the certification of new drugs or medical devices. Under the guidance of Prof Marco Viceconti one of the tope world-wide experts on in silico medicine, the researcher will create the content and manage web sites, social network accounts, e-newsletters, and online communities allowing all those interested in the topic who work in academia, industry, consulting or service firms or in regulatory agencies to exchange good practices on the use of modelling and simulation in medicine. The post is funded by the EU project STRITUVAD, which aims to develop in silico methods to reduce the cost of clinical trials for new therapies for tuberculosis in developing countries where this disease is endemic.

The ideal candidate should have:

  • A Master degree (Laurea Magistrale) or equivalent title in scientific disciplines or Communication Science
  • Excellent knowledge of English language (written and spoken)
  • Priority will be given to candidates with experience in Science Communication, dissemination of research results, networking and community building among scientists, production of press releases

If you are interested apply here: https://www.aricweb.unibo.it/BandiPubblicati/zz_Bandi_din.aspx?strid=961

or contact me by email for further information.

25th Congress of the European Society of Biomechanics

The 25th Congress of ESB will take place in Vienna, Austria from 7 – 10 July 2019.

ESB 2019 is jointly organized by Philipp THURNER (TU Wien), Dieter PAHR (TU Wien & KL Krems), and Christian HELLMICH (TU Wien). The congress itself will take place at the University of Vienna which is located in the centre of the city.

Prospective authors are encouraged to submit their latest research for capturing and discussing the science at the forefront of biomechanics in a mix of oral and poster presentations.

Abstracts have to be submitted online through the congress website by January 31, 2019. Further information is available here.

Further detailed information as well as information on sponsoring and exhibition can be found here.

We are looking forward to receiving your contributions and to welcoming you at ESB2019 in Vienna!

Posdoc Position in characterization and modeling of elastic protein @ Université de Lyon (France)

Mechanical characterization and modeling of a synthetic elastic protein and its effects on the arterial function

A post-doctoral fellowship is available at the Center for Biomedical and Healthcare Engineering Mines Saint-Etienne – SAINBIOSE (INSERM-U1059) – Université de Lyon (France).

Scientific context: Elastin is the main elasticity provider for several soft tissues (such as dermis, arteries, pulmonary alveoli) in its fibrous form and a signaling molecule in cell/extracellular matrix interaction. Elastin-rich elastic fibers allow the large artery walls to transform the pulsatile blood flow ejected by the heart into a continuous blood flow in the peripheral arteries (Windkessel effect). Dysfunctions are highly correlated with diseases such as artery stenosis, aneurysm, hypertension or cardiac hypertrophy, which have strong repercussions on arterial biomechanics and can threaten the vessel integrity.
Setting aside surgery, there is currently no treatment for preventing, blocking or treating any loss of elasticity. It therefore appears, from a biomechanical point of view, that the introduction of an entity that provides elasticity within the arterial wall would be the most trivial action to stop arterial stiffening, but remains currently limited due to chemo-biological issues. The Arterylastic project, to which the thesis is linked, proposes to unlock this technological barrier using an original synthetic elastic protein (SEP) recently developed with a synthetic backbone devoted to skin engineering.

Academic context: As previously mentioned, the thesis takes place in a larger project named Arterylastic, funded by ANR, combining pluridisciplinary approaches of three laboratories in France: LBTI – the Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (UMR5305 CNRS/UCBL1 Lyon), HP2 –Hypoxie Physiopathologie Cardiovasculaire et Respiratoire (INSERM U1042 – University Grenoble Alpes) and Sainbiose (within the Center for Biomedical and Healthcare Engineering CISSAINBIOSE/INSERM U1059 – Mines Saint-Etienne). The PhD student will work at CIS, which also conducts major international research projects in the field of soft tissue biomechanics, in particular aortic aneurysms. He will collaborate with other researchers involved in ERC projects (https://www.mines-stetienne.fr/en/author/avril/, https://www.emse.fr/~badel/).

Objectives: The objective is to restore (or at least improve) arterial function and mechanical properties under conditions of elastic fibers injury. The objective will be reached if the SEP is correctly integrated into elastic fibers and if the SEP restores arterial wall elasticity and/or physiological parameters in relevant animal models. In this thesis, we will evaluate the mechanical behavior of the cross-linked SEP and of arterial samples from treated mouse models and a numerical model will be developed from experimental data to better predict treatment parameters.
The main tasks will be:
1. Experimental tests will be carried out for characterizing the macroscopic mechanical properties of the SEP and of arteries treated with the SEP. The cross-linked SEP will be characterized using tensile tests with a customized device. Mechanical parameters of treated arteries will be assessed by measuring pressure-diameter curves from mouse arteries tested in a customized tension-inflation test.
2. A multiscale numerical model of the mechanical behavior of arteries will be elaborated, taking into account their microstructural composition and morphology (bilayer, specific contributions of elastin, collagen, smooth muscle cells, possible proteoglycans) and including the effects of possible grafting of the SEP to the arterial wall. The model will be tested for arteries with competent elastic fibers, for arteries with damaged elastin and induced-tissue remodelling, and for arteries treated with the SEP.
3. The experimental results obtained at task 1 will be used to evaluate and calibrate the prediction ability of the numerical model developed in task 2. Sensitivity analysis permitting to find the optimal treatment conditions with the SEP for different types of therapeutic targets will be addressed.

Candidate profile: Candidates with strong skills in mechanics (modeling and experimental) and biomechanics are expected. Motivation and interest in bioengineering applications is recommended.

How to apply: Send CV, cover letter and letters of recommendation to claire.morin@emse.fr and avril@emse.fr.


Corporate members of the ESB:

AMTI force and motion logo
BERTEC logo
Beta CAE logo
BoB Biomechanics logo
Materialise logo
Nobel Biocare logo