ESBiomech24 Congress in Edinburgh

2nd ESB Webinar Announced: OpenSim

Jumping into Musculoskeletal Modeling with OpenSim

We are delighted to announce the second webinar of the ESB Webinar Series which will introduce the OpenSim Software. The webinar will take place on October 16th 2019 at 18:00 CEST.

OpenSim is a freely-available, open-source musculoskeletal simulation software for visualizing and simulating movement. Musculoskeletal modeling and simulation are powerful tools to help understand the complex interactions between the neuromuscular and skeletal systems during movement.

This webinar aims to:

  • Introduce the main capabilities of OpenSim, including new features from the latest release of the software
  • Demonstrate a typical pipeline of creating and visualizing a muscle-driven simulation starting with motion capture data of a subject jumping

By the end of this tutorial, attendees will learn some of the core capabilities of OpenSim, including how to:

  • Load and visualize motion capture data
  • Load and explore a musculoskeletal model
  • Visualize a motion
  • Create a dynamic simulation.

The webinar will be conducted by Dr. Jennifer Hicks. Dr. Hicks is Associate Director the National Center for Simulation in Rehabilitation Research, an NIH-funded center at Stanford University that brings state-of-the-art engineering tools to rehabilitation scientists. In addition, she is the Research and Development Manager of the OpenSim software project, guiding the project’s development team and serving as the voice of the software user/researcher.

The seminar will last 45 minutes followed by 15 minutes of Q/A from the audience. You will have the chance to ask your questions which will be addressed by the speaker at the end of the webinar. However, it would be great if you could send your question in advance while filling the registration form or by sending to Ehsan.soodmand@charite.de and/or rodrigo.romarowski@grupposandonato.it  before the start of the webinar.


Click here to register for the webinar.


October 16th 2019 18:00 CEST

Live on ESB YouTube Channel – Please Subscribe! (https://www.youtube.com/esbiomech )

Looking forward to your attendance.

ESB Student Committee

Fully funded PhD studentship @Nottingham

The link to the position advertisement is  http://jobs.nottingham.ac.uk/ENG1305 .

Applications are invited for an exciting fully-funded PhD studentship in the Bioengineering Research Group, Faculty of Engineering at the University of Nottingham.

Research area. The research topic focuses on developing solutions that enable in-natura markerless motion capture for biomechanical modelling in Biomedical and Sports Engineering. Specifically, it addresses the fundamental research problem of reconstruction of person-specific human pose, kinematics, and surface geometry to enhance our understanding of the non-linear behaviour of human motion, musculoskeletal injury and disease and enable modelling of soft-tissue dynamics. Open problems in human-object interaction and tracking will also be explored.

The project. The candidate is expected to develop a fast and robust method for inferring and tracking 3D shapes of deformable objects, humans in particular. The method will be mainly based on visual sensing. Inertial and force sensors will be used as complementary sensing. The method can use either or both of model-based and learning-based approaches, such as CNN based segmentation, geometric CNNs, or convolutional kernel filter based tracking. The candidate will have access to a newly established state-of-the-art integrated motion capture laboratory.

The candidate. The ideal candidate will have;

  1. a first or upper second class honours or Masters degree in Electrical and Electronic Engineering, Physics, Computer Science or other relevant and equivalent degree from a quality recognised institution.
  2. a solid background in mathematics and excellent analytical and numerical skills, as well as problem solving skills
  3. strong background in 3D computer vision, pose estimation, shape reconstruction, structure from motion, segmentation, or object detection.
  4. experience in image or video processing and digital signal processing.
  5. strong programming skills in Matlab, C/C++, or Python. Previous hands-on experience with deep learning platforms and agile software development as well as experience of working within industry will be an advantage.
  6. very good written and communication skills and fluency in English.
  7. a driven, independent professional and self-reliant work attitude within a fast-paced & collaborative environment.

Informal enquiries about the project may be addressed to Dr Ami Drory. Please (i) insert your cover letter, CV and copies of academic transcripts into a single pdf file. (ii) Name the file with your name as ”firstName_lastName_phd”. (iii) e-mail to: Ami.Drory@nottingham.ac.uk, with [3D shape reconstruction PhD application – lastName] as the email subject.

Application instructions. Formal applications are to be made via http://www.nottingham.ac.uk/pgstudy/apply/applyonline.aspx

Closing date for applications. Review of applications will commence on 15 October 2019 and remain open until filled. A start date is expected to be as soon as practical thereafter.

The University. The University of Nottingham is a world-class University consistently ranked among the world’s top 100 universities. It is a Russell Group university and a member of Universitas 21 (U21), the global network of research-intensive universities. The University is ranked eighth in the UK on ‘research power’ in the latest REF rankings. The Faculty of Engineering is ranked in the top 10 in the UK with more than 98 per cent of its research ranked of international quality, with 85 per cent graded as ‘world-leading’ or ‘internationally excellent’.

The university was awarded the University of the Year for both International and Sports in the 2019 Guide. With award-winning campuses, University Park is The University of Nottingham’s largest campus at 300 acres. The campus is widely regarded as one of the largest and most attractive in the UK. Set in extensive greenery and around a lake, University Park campus has consistently won a Green Flag Award for its green and environmentally friendly spaces every year since 2003. The University of Nottingham was ranked the World’s second greenest university in 2019 (GreenMetric). The brand new £40 million David Ross Sports Village is now open, offering an inspirational and accessible sports provision for all.

PhD studentship at Insigneo Institute (University of Sheffield):

A stochastic finite-element model for predicting changes in bone strength

Closing date 22/09/2019

Employer: The University of Sheffield (Department of Mechanical Engineering)

Location: Sheffield, UK

Description

Are you a bright, enthusiastic and self-motivated student interested in a PhD in biomechanics? An exciting multidisciplinary PhD opportunity is now available at the Insigneo Institute for in silico Medicine at the University of Sheffield, UK.

Pharmacological interventions that target improvement in bone strength typically seek to improve bone morphology (geometry). Yet, a model to predict change in strength, given knowledge of bone morphology changes, has not received much attention. The recently awarded project MultiSim2 (supported by the EPSRC, UK) will engage with this ageing-related challenge.

Changes in tibia geometry appear at distinct scales (doi: 10.1371/journal.pone.0219404)

Previously in MultiSim, in vivo micro-computed tomography enabled quantification of bone geometry changes in small animals (e.g. mice) with unprecedented spatial and temporal detail. The PhD student will use this information to:

  • Capture bone geometry changes driven by cellular processes using Gaussian Process emulators;
  • Implement a stochastic finite-element (sFE) model to predict bone strength changes in response to emulator parameters;
  • Analyse the global sensitivity and uncertainty propagation of the sFE model.

The expected start date for this project is December 2019.

About the University of Sheffield
The University of Sheffield is a Russell Group university, which represents the 24 leading UK universities committed to maintaining outstanding research and teaching environments. The University of Sheffield regularly ranks among the top 10 in the UK in terms of research output. In addition to having a long tradition of world-class engineering research, Sheffield benefits from geographical proximity to the industrial cities of Manchester, Liverpool and Leeds.

The ambition of the Insigneo Institute is to achieve a transformational impact on healthcare. As such, it possesses extensive experience in the development of computer simulations aimed at better understanding of the biomechanics of the musculoskeletal system. This project will be co-supervised by Dr Pinaki Bhattacharya, Dr Enrico Dall’Ara and Prof Visakan Kadirkamanathan. It will benefit as well from the multidisciplinarity of MultiSim2 research.

Candidate Profile
The successful candidate should have or be expected to obtain an excellent degree in mechanical engineering, bioengineering, computer science, physics, applied mathematics or a related discipline. Experience in finite-element analysis and in programming languages (e.g. C, C++, Matlab, Python) are essential. Exposure to high-performance computing is desirable.

Funding and Duration
A 3.5 year studentship, co-funded by the Departments of Mechanical Engineering, Oncology and Metabolism and Automatic Control and Systems Engineering, is available for UK and EU applicants. The studentship covers the cost of tuition fees and provides an annual tax-free stipend at the standard UK research rate.

How to apply?

To apply please use our standard on-line PhD application form and indicate on your form that you are replying to this advert or email me-pgadmit@sheffield.ac.uk for further guidance on applying.

Contact details

For further information about this project, please contact Dr Pinaki BhattacharyaDr Enrico Dall’Ara or Prof. Visakan Kadirkamanathan with “BONEsFE PhD studentship” in the title.

PhD position @ Julius Wolff Institute (Berlin) : COMPUTER OPTIMIZATION OF SCAFFOLDS FOR BONE REGENERATION

A PhD position is available within the Computational Mechanobiology Group at the Julius Wolff Institute (Charite Medical School in Berlin) on the topic of computational optimization of scaffolds to promote bone regeneration within large bone defects. 

Background

Although bone has the fascinating ability to self-regenerate after injury, large bone defects often lead to delayed or non-unions. The treatment of these conditions remains a clinical challenge for which scaffold-based strategies appear as a promising approach. In this approach, 3D open porous structures are implanted in the bone defect with the aim to support bone regeneration. Although, preliminary pre-and clinical data show encouraging results, there is still a need to optimize these scaffolds to ensure successful healing. The growth of new bone within the scaffold is influenced by many factors, such as the scaffold architecture, material properties, patient health condition, etc. The aim of this project is to investigate the potential optimization of scaffolds to promote bone regeneration within large bone defects.

Tasks

You will develop computer models to simulate the bone healing process and the interaction between mechanical signals (strains) within the healing region and biological processes (e.g. cellular migration, matrix deposition, etc.) taking place. You will simulate the interaction of the bone regeneration process with scaffold-support structures and develop algorithms for the computer optimization of the scaffold design to promote the bone healing process. You will be able to compare model predictions with experimental data from animal studies (e.g. histology, microCT) and to have access to patient data. The project is part of a research collaboration between several Institutes on the topic of “Personalised Bone Defect Treatment” (Funded by the BMBF).

Your profile

  • A degree in Mechanical Engineering/Computer Science/Mathematical Biology or a related discipline
  • Knowledge of Finite Element Modelling will be advantageous
  • Experience in Programming is required (e.g. C/C++, Matlab)
  • High motivation and strong interest in research

What we provide

This position is available for a period of three years. Salary will be commensurate with experience. You will work in a friendly team and in a unique research environment. As a PhD student you will be associated to the Berlin-Brandenburg School of Regenerative Therapies (www.bsrt.de) and benefit from the interaction with international students. Starting date: 1st October, 2019.

Apply
Interested candidates should send a CV, a cover letter and two references that could be contacted. Please email the application to Prof. Checa via email at: sara.checa@charite.de

Two Post-Doc and/or post-graduate Research Assistant positions at Università Campus Biomedico di Roma.

In the context of several National and International Grants, we are seeking two outstanding Post-Doc researchers and/or motivated post-graduate Research Assistants to join us in developing new wearable devices, systems, and data analysis tools for physiological and physical activities monitoring.

The ideal candidate should have the following expertise:
– Relevant publications in international journals and experience in fundraising
– Fluent English is essential
– Excellent interpersonal skills including team working and a collegiate approach. Self-motivation, initiative, and independent thought/working.
– Proficient in MATLAB, Python, C, C++ programming
– Experience in one or more of the following topics:

1. Wearable systems design and development, encompassing electronic design, assembly and testing, microcontroller-based programming.
2. Body Sensor Networks
3. Real-time data acquisition and processing and related algorithms
4. Experimental protocols on human subjects

We will appreciate if you could send your interest to apply by email to E. Schena (e.schena(AT)unicampus.it), D. Formica (d.formica(AT)unicampus.it) and C. Massaroni (c.massaroni(AT)unicampus.it), including a motivation letter detailing how your research profile relate to the project and a CV.

Advanced International School on Imaging, Modelling and Simulation in Biomechanics and Mechanobiology (Rome, Feb 2020)

Dear Colleague,
This is the first-call-for-participation to the Advanced International School on Imaging, Modelling and Simulation in Biomechanics and Mechanobiology that we are organizing in the beautiful city of Rome on February, 24th-28th, 2020 (Italy).

The school has been endorsed by the ESB and members of the Society will receive a reduction on the registration fees.

The School will instruct on the importance of a rigorous and multidisciplinary approach for the effective translation of biomechanics models into the clinical practice. Six internationally-outstanding invited lecturers have been selected for covering topics that span from imaging, through theoretical biomechanics, up to computational biomechanics and mechanobiology: Vikram DeshpandeChristian GasserDaniel HurtadoBruno QuessonZohar Yosibash and Alessandro Veneziani.

Classes on basic notions in the morning will prepare attendants to lectures on advanced topics in the afternoon on a wide range of applications.

One session will be dedicated to talks from participants and one day will propose a series of Advanced seminars.


More information are available on the attached flyer and on the web-site www.unicampus.it/advanced-school


With our best regards,

Alessio Gizzi, Michele Marino, Giuseppe Vairo


Early Stage Researcher at Materialise (Belgium) and University of Zaragoza (Spain)

The CuraBone Project is looking for a highly motivated Early Stage Researcher ESR (PhD Students) interested in working in an ambitious multidisciplinary project to work at Materialise (Belgium) and University of Zaragoza (Spain). This ESR position is aimed to pursue part of the scientific objectives of CuraBone through the development of its own Individual Research Project (IRP). Take a look at the project description to know more about the project.

Find further information about the offer in Euraxess web page.

The applications may be done at either recruitment institutions: University of Zaragoza and Materialise. Find more information on how to apply below.

The selected candidate will be employed under a local employment contract for a maximum of 14 months, compatible with national and regional legislation and following the guidelines provided by the European Charter for Researchers and Code of Conduct for the Recruitment of Researchers, including salaries with adequate and equitable social security benefits.

A career development plan will be prepared for the selected candidate in accordance with his/her supervisor and will include training, planned secondments and outreach activities in partner institutions of the network. For more information please visit the Marie Sklodowska-Curie Actions Innovative Training Networks website.

To apply for the vacancy, please check the eligibility criteria below. If you fulfil all the requirements, send your application with all the necessary records to assess your candidature.

  • Not be in possession of a doctorate/PhD degree and should have less than 4 years of research experience (starting at the date of obtaining the master’s degree).
  • At the time of selection by the host institution, the candidate may not have resided or carried out his/her main activity (work, studies, etc.) in the country of their host institution for more than 12 months in the 3 years immediately prior to their recruitment under the project.
  • For Unizar’s Biomedical Engineering PhD, it is required 300 Graduate ECTS (of which at least 60 ECTS must of Master`s degree)

The applications may be addressed at either both recruiting institutions: University of Zaragoza and Materialise. Find more information to apply below. In case you had any doubts, please do not hesitate to contact us: curabone@unizar.es

All applicants will be employed under a local employment contract for a maximum of 3 years, compatible with national and regional legislation and following the guidelines provided by the European Charter for Researchers and Code of Conduct for the Recruitment of Researchers, including salaries with adequate and equitable social security benefits.

A career development plan will be prepared for each fellow in accordance with his/her supervisor and will include training, planned secondments and outreach activities in partner institutions of the network. The ESR fellows are supposed to complete their PhD thesis by the end of the 3rd year of their employment. For more information please visit Marie Sklodowska-Curie Actions Innovative Training Networks.

More details:

http://curabone.unizar.es/index.php?modulo=recruitment

Research Assistant m/f (30 h) Bioresorbable Material Testing @ KL Krems, Austria

The Karl Landsteiner University of Health Sciences (KL) offers a research position limited to 1 year in the Department of Anatomy and Biomechanics (Division Biomechanics, Head: Univ.-Prof. Dieter Pahr):

Your responsibilities:

  • Participation in the biomechanics research project: „BEST Mg Alloy. Biokompatible Elemente – Simulationen und Tests für Mg-Legierungen“.
  • Usage of microcomputed tomography and mechanical testing on biodegradable metals.
  • Programming of analysis software.
  • Support in teaching activities.

Your profile:

  • Bachelor or master degree in mechanical- or civil engineering, biomedical engineering, mechatronics, technical physics, or similar fields.
  • Basic knowledge in mechanics and programming
  • Self-responsible and reliable working approach
  • Interest on scientific work
  • Friendly and team oriented personality

Your perspective:

You can expect a challenging job at a young university in a highly motivated team. The Karl Landsteiner University of Health Sciences is dedicated to achieving a balanced mix of male and female academic and non-academic staff. Consequently, applications from female candidates are particularly welcome. The minimum monthly gross salary for this position is € 2.000,- (30h).

Applications should include a motivation letter, curriculum vitae, and credentials and should be sent by e-mail by 31th July 2019 to Ms. Christina Schwaiger of the Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria (bewerbung@kl.ac.at).

PhD-Position: Non-linear μFE of Bone @ TU-Wien, Austria

The Vienna University of Technology is seeking an exceptional student for a PhD position at the Institute for Lightweight Structures and Structural Biomechanics (Computational Biomechanics Group of Prof. Pahr) from 01.09.2019 for a period of 4 years, salary group B1, with an employment scale of 30 hours per week, to occupy. The minimum monthly salary is currently EUR 2,148.40 (14 times a year). Due to activity-related previous experience or involvement in third-party funded projects, the fee may increase.

PhD Topic

The PhD thesis builds on existing research in the field of non-linear micro FE in bone biomechanics (see http://www.eccm-ecfd2018.org/admin/files/filePaper/p1159.pdf) This simulation method should be applied in the field of bone biomechanics and orthopedic implants.  Don’t hesitate to contact members of the research group at the ESB 2019 in Vienna.

Requirements

Applicants must have a Master’s degree (diploma) in Mechanical Engineering, Civil Engineering, Biomedical Engineering, Technical Physics, Medical Informatics or equivalent studies.

Furthermore, very good programming skills, preferably Python and C ++, mechanics, fundamentals of the finite element methods, German language skills (minimum level B2 according to CEFR) are required.

Other desired skills & interests: Biomechanical fundamentals, basic knowledge of medical image processing.  The willingness to cooperate in teaching and at the institute is expected as well as good knowledge of English, interest in scientific work.

Application deadline: until 18.07.2019 (date of postmark)

Applications should be sent to the Personnel Administration, Department of Human Resources of the Vienna University of Technology, Karlsplatz 13, 1040 Vienna. Online applications to rene.fuchs@tuwien.ac.at  Applicants are not entitled to compensation for accrued travel and subsistence expenses incurred as a result of the admission procedure.

Petition, letter to EMA about in silico methods

The European Medicine Agency has recently published a document that describes its strategy until 2025:
https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/ema-regulatory-science-2025-strategic-reflection_en.pdf

The EMA proposed strategy recognizes the importance of emerging technologies in general and modelling and simulation, also known as in silico methods, in particular. However, the document tends to stress the value of in silico methods almost exclusively in connection with the reduction of animal experimentation. While we agree that this is a relevant application for such methods, it is not the only one and likely not the most impactful one for the patient and for the industry. The term In Silico Trials indicates a number of use cases, not only related to pre-clinical evaluation, but also to the reduction, refinement, and in some cases even replacement of clinical trials.

The VPH Institute together with the Avicenna Alliance, the Insigneo Institute for in silico Medicine and the Alma Mater Studiorum, University of Bologna has drafted an open letter, which will be sent to Prof Guido Rasi – the Director of EMA to raise our collective voices on this regard.

At this link you can find the full text and SIGN THE PETITION:
https://www.change.org/p/guido-rasi-foster-adoption-of-in-silico-trials-through-ema-s-strategy-on-regulatory-science-to-2025

We wish to collect signatures on the document by as many experts in academia and industry as possible to make sure our voice is heard. We encourage you all to take a minute of your time to fill up this form and help us raising the awareness of your colleagues on this matter.


Corporate members of the ESB:

AMTI force and motion logo
BERTEC logo
Beta CAE logo
BoB Biomechanics logo
Materialise logo
Nobel Biocare logo