ESBiomech24 Congress in Edinburgh

12 PhD positions available in the Disc4All training network

The European community requires early stage researchers (ESRs) who can work across the boundaries of traditional disciplines, integrating experimental and in silico approaches to understand and manage highly prevalent multifactorial disorders, such as musculoskeletal disorders. The Disc4All training network utilises intervertebral disc degeneration (LDD) leading to low back pain (LBP) as a relevant application for the integration of data and computational simulations in translational medicine, to enable rational interpretations of the complexity of the interactions that eventually lead to symptoms.


LBP is the largest cause of morbidity worldwide, yet there remains controversy as to the specific cause leading to poor treatment options and prognosis. LDD is reported to account for 50% of LBP in young adults, but the interplay of factors from genetics, environmental, cellular responses and social and psychological factors is poorly understood. Unfortunately, the integration of such data into a holistic and rational map of degenerative processes and risk factors has not been achieved, requiring creation of professional cross-competencies, which current training programmes in biomedicine, biomedical engineering and translational medicine fail to address, individually.

Disc4All aims to tackle this issue through collaborative expertise of clinicians; computational physicists and biologists; geneticists; computer scientists; cell and molecular biologists; microbiologists; bioinformaticians; and industrial partners. It provides interdisciplinary training in data curation and integration; experimental and theoretical/computational modelling; computer algorithm development; tool generation; and model and simulation platforms to transparently integrate primary data for enhanced clinical interpretations through models and simulations. Complementary training is offered in dissemination; project management; research integrity; ethics; regulation; policy; business strategy; and public and patient engagement. The Disc4All ESRs will provide a new generation of internationally mobile professionals with unique skill sets for the development of thriving careers in translational research applied to multifactorial disorders.

Hiring Institutions:
Hiring Disc4All Members:
• InSilicoTrials (www.insilicotrials.com, See job offer ESR 1)
• Barcelona Supercomputing Center – Centro Nacional de Supercomputación (www.bsc.es – See job offer ESR 2)
• University of Oulu (www.oulu.fi – See job offer ESR 4)
• Galgo Medical (https://www.galgomedical.com – See job offer ESR 5)
• King’s College London (http://www.kcl.ac.uk/aboutkings/index.aspx – See job offer ESR 6)
• Sheffield Hallam University (https://www.shu.ac.uk/research – See job offer ESR 7)
• University of Bern (www.dbmr.unibe.ch – See job offer ESR 9)
• University of Liège (https://www.uliege.be – See job offer ESR 12)


Type of contracts: temporary (36 months)
Job status: full-time
Hours per week: See individual job offers
Offer starting dates: Between November 1st, 2020 and January 31st, 2021
EU Research Framework: H2020 MSCA-ITN-ETN
Marie Curie Grant Agreement Number: 955735

More information:

Post-doc offer @INSERM, Computational Modeling of Aortic Aneurysm Progression

Keywords: mechanobiology, finite-element, constrained-mixture theory, smooth muscle cells.


Academic context: This project will take place at Sainbiose (UMR INSERM-U1059 – Mines Saint-Etienne, France), in a group working in the domain of arterial mechanobiology, in collaboration with vascular surgeons. It is funded by an ERC consolidator grant.


Scientific context: The mechanical response of arterial tissue is a consequence of the arterial microstructure morphology. In the past decade, the different fiber networks (namely the collagen and elastin networks) have been investigated because of their important role in the arterial mechanics. Their maintenance is achieved by different intramural cells (smooth muscle cells, fibroblasts). Our objective is to investigate computationally how the impairment of important biological pathways involved in this maintenance can have dramatic effects on the integrity of fiber networks and lead to an aneurysm and a dissection in the aorta.


Project summary: During the past years, within the ERC project Biolochanics*, our group developed a mechanobiological model of the arterial wall. It can predict the non-linear mechanical behavior of arteries from their microstructure and simulate the growth and remodeling effects using the constrained mixture theory and the concept of maintaining stress homeostasis in the vessel wall. Presently, only the effects of proteolytic injury have been considered as triggers of growth and remodelling. However, recently published contributions show that impairment of mechanosensitivity and mechanotransduction of smooth muscle cells is a major driver of aneurysm development. Using our computational models and existing experimental data in our group, and integrating innovative theoretical developments, the successful applicant will investigate these effects computationally to eventually propose patient-specific simulations of aortic aneurysm progression. He/she will also be in charge of validating the proposed model.


Student profile: background in computational mechanics and mechanobiology. The ideal applicant has motivation for work at the interface between disciplines.


Administrative aspects: This is a 12-month position, renewable, starting 1st October 2020.
If you are interested, please send, via email, a curriculum vitae and a cover letter, to Prof. Stéphane Avril (avril@emse.fr)

*https://www.mines-stetienne.fr/en/research/projects/biolochanics/

Postdoc position – In-silico multiscale analytics for personalized cancer diagnosis @University of Zaragoza

PostDoc position in the frame of a H2020 project: PRIMAGE / PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, empowered by imaging biomarkers (G.A. nº. 826494)

The PRIMAGE project is looking for a highly motivated researcher interested in working in an ambitious multidisciplinary project to work at the University of Zaragoza (Spain). PRIMAGE proposes a cloud-based platform to support decision making in the clinical management of malignant solid tumours, offering predictive tools to assist diagnosis, prognosis, therapies choice and treatment follow up, based on the use if novel imaging biomarkers, in-silico tumour growth simulation, advanced visualisation of predictions with weighted confidence scores and machine-learning based translation of this knowledge into predictors for the most relevant, disease-specific, Clinical End Points.

We are hiring a post-doc with certified experience in other research groups in the following tasks: advance computational simulation of living tissues, Imaging post-processing, management and coordination of research projects.

Deadline for applications: 15th September 2020

https://euraxess.ec.europa.eu/jobs/548404

PostDoc @Heriot-Watt Edinburgh

Postdoctoral Research Associate in Multiscale Mechanics of Mineralised Tissues

Vacancy Details

Job ReferenceIRC27904
Closing Date8 Aug 2020 23:00 (UK time)
Salary£32,817– £38,017 (Grade 7)
LocationEdinburgh
DepartmentInstitute of Mechanical, Process and Energy Engineering
CategoryAcademic and Research
StatusFull-time
Duration of Contract (months)36 months
Informal enquiries by email to:Dr Uwe Wolfram at u.wolfram@hw.ac.uk
How to apply:https://www.hw.ac.uk/uk/jobs/job_SVJDMjc5MDQ.htm

About our Team

We are excited to be able to recruit a postdoctoral research associate in the area of Multiscale Mechanics of Mineralised Tissues to the Biomechanics group at Heriot-Watt University. The selected candidate will join a multidisciplinary team to work on a Leverhulme Trust funded project seeking to understand rapid cold-water coral habitat loss in a future ocean. Specifically, we seek to understand how climate change induced ocean acidification and bioerosion affect the multiscale mechanical properties of cold-water coral reefs and how these effects may accelerate reef-habitat loss.

The selected candidate will be based at Heriot-Watt University joining a multidisciplinary team working on multiscale mechanics of biologic tissues and structures. This is a joint project with the Changing Oceans Group at the University of Edinburgh, which conducts incubation experiments on live and dead coral skeletons under projected future conditions. The selected candidate will benefit from co-supervision by Dr Sebastian Hennige of the Changing Oceans Group along with visiting scholar access to University of Edinburgh.      

Detailed Description of Position

Ocean acidification threatens deep-sea coral reefs and could lead to dramatic and rapid loss of the habitat they make. Here we combine biology and engineering approaches to quantify the risk and time scales of such habitat loss. Increases in porosity and loss of skeletal material in structurally critical parts of the coral reef foundation could lead to physical habitat collapse on an ecosystem scale, reducing its potential to support associated biodiversity. Our unique interdisciplinary approach will identify the timescales and conditions such ‘tipping points’ would occur within, to allow more effective future management of these vulnerable ecosystems.

To do so, we seek to (i) quantify skeletal dissolution rates under different future oceanic conditions (primarily delivered by University of Edinburgh); (ii) develop a simulation framework that allows quantification of failure rates of coral skeletons; (iii) use results from (i) and (ii) to scale up to larger reef-type structures and estimate tipping points of habitat loss. The successful candidate will also develop and conduct characterisation and validation experiments based on extensive expertise in multiscale experimentation. The successful candidate will work closely with our collaborators (with regular joint meetings) to link results of (ii) and (iii) to the marine-biological aspects (i). The successful candidate will also work with our partners within JNCC (Joint Nature Conservation Committee) and NOAA (National Oceanic and Atmospheric Administration, US Department of Commerce) to foster dissemination along the policy making route. This is an exciting new project with scope to contribute significantly to tackling some of the most pressing global challenges.

The successful candidate will make use of our excellent facilities including dedicated biomedical tissue laboratories, and cutting-edge equipment including a broad suite of tissue processing equipment, mechanical testing equipment, imaging equipment (micro-CT, microscopy and optical coherence tomography) and a dedicated node on a high-performance cluster for computation.

We are looking for someone who is ambitious and collaborative, with a passion for developing solution for pressing global challenges.  The post will be for 36 months.  There may be the opportunity for the post holder to develop their own fellowship applications during this post, with support from the PI.

The successful candidate will work in two departments that have an international reputation for engineering, strong expertise in biomedical engineering as well as marine biology, and world-class equipment and facilities.  

Key Duties and Responsibilities

The successful appointee will be expected to undertake the following:

  • Plan and execute work plans to progress investigations into the multiscale mechanical behaviour from ‘crystal building block to reef’
  • Lead and contribute to research dissemination (i.e. papers and conference attendance)
  • Work closely with the PI and collaborators to analyse, interpret, and present experimental and modelling data
  • Work closely with other postdoctoral associates, PhD students and collaborators to ensure smooth research team function
  • Participate actively in group meetings
  • Take a leadership role to ensure the effective running of computational analyses.
  • Participate in outreach activities, which may involve talks for the general public, attendance at science festivals or and preparation of demonstrators.
  • Participate in advisory meetings with Joint Nature Conservation Committee (JNCC), which may involve talks to executive decision makers
  • Responsibilities will also include assistance in the day-to-day running of the simulations and computational analyses using own servers as well as HWUs HPC cluster, liaising with companies and external collaborators.
  • Contribute, under supervision, to the planning of research projects, including the development of new grant/contract proposals.

Please note that this job description is not exhaustive, and the role holder may be required to undertake other relevant duties commensurate with the grading of the post.  Activities may be subject to amendment over time as the role develops and/or priorities and requirements evolve. 

Education, Qualifications and Experience

this will form the basis of your selection criteria and shortlisting. Please use the examples below and delete /add as appropriate.

Essential Criteria

  • Applicants should a PhD in biomedical engineering, physics, material science, or a related subject (Applicants should have submitted their PhD thesis first draft by the start date.) broadly in one of the following areas:
    • Multiscale constitutive modelling (ideally but not necessarily biologic hard or soft tissues)
    • Multiscale mechanics of materials (mathematically, experimentally, or theoretically)
    • Image based multiscale computational modelling
  • Experience of programming and simulation
  • Working with image data (key word: imaged based modelling)
  • Experience working in a multidisciplinary environment/team and openness to dive into a novel research field in biomechanics
  • Excellent verbal and written communication skills
  • A record of high quality, peer-reviewed publications and evidence of contribution to the writing of these publications proportionate to opportunity.
  • Willingness and ability to travel for dissemination, outreach, and public engagement activities.

Desirable Criteria

  • Experience in conducting validation and material characterisation experiments (nanoindentation, micropillar testing, macroscopic testing, or similar)
  • Experience in using/developing artificial neural network approaches
  • Experience of research-student supervision.

When applying, please include a cover letter addressing these selection criteria. 

The intention is to hold the interviews towards the end of week commencing 17/8/2020.

Job Share

At Heriot-Watt University we understand that being diverse makes us better which is why we support a culture of respect and equal opportunity, and value diversity at the heart of what we do. We want to increase the diversity of our workplace to underpin a dynamic and creative environment.

While this is a full-time post, flexible percentage working regimes may be possible for the right candidate.

Post-doc in Biomedical Engineering, Biomechanics, partial placement MAX IV

Lund University, Faculty of Engineering, Biomedical engineering

Lund University was founded in 1666 and is repeatedly ranked among the world’s top 100 universities. The University has 40 000 students and more than 8 000 staff based in Lund, Helsingborg and Malmö. We are united in our efforts to understand, explain and improve our world and the human condition.

LTH forms the Faculty of Engineering at Lund University, with approximately 9 000 students. The research carried out at LTH is of a high international standard and we are continuously developing our teaching methods and adapting our courses to current needs.

MAX IV is a Swedish national large-scale research laboratory hosted by Lund University. It provides scientists from Sweden as well as internationally, with state-of-the-art instrumentation for research in areas such as engineering, physics, structural biology, chemistry and nanotechnology. Fully developed it will receive more than 2 000 scientists annually, conducting ground-breaking experiments in materials and life sciences using the brilliant X-ray light.


Subject description

Background:  The research in the biomechanics group is focused on understanding the link between mechanics and biology in the musculoskeletal system, with emphasis on solving problems in orthopaedics. Tissue characterisation, using synchrotron based techniques has become vital to understand the tissue’s function-, structure-, composition relationships.

NanoMAX and SoftiMAX are both nanoprobe beamlines, designed to take full advantage of MAX IV’s exceptionally low emittance and the resulting coherence properties of the X-ray beam enabling imaging applications at unprecedented resolution. NanoMAX uses hard X-rays, and has been operational since 2017. Available techniques include scanning X-ray diffraction and coherent imaging in the Bragg geometry, forward ptychography and coherent diffraction imaging, as well as X-ray fluorescence (XRF) imaging. SoftiMAX is a soft X-ray beamline, planned to be in user operation in 2021. Available techniques include Scanning Transmission X-ray Microscopy (STXM), ptychography, and XRF imaging.

Goals: The current position is primarily dedicated to XRF, with the main aim to develop a more intuitive data analysis pipeline with emphasis on applications for life science-oriented users. The goals will be accomplished through the framework of the research questions addressed within the biomechanics group with focus on understanding the function-structure-composition relationships in mineralized tissues. Specific emphasis is on elucidating the role of Zinc in mineralization of bone.

This employment is at Biomedical Engineering, but with a major part spent at MAX IV laboratory.

Work duties / Tasks

The main duties involved in the post-doctoral position is to conduct research and beamline development. User support is also included, but up to no more than 20% of working hours. The position shall include the opportunity for three weeks of training in higher education teaching and learning.

Detailed description of the work duties, such as:

  • The post-doc is expected to take responsibility for designing, planning and developing an intuitive and more automated analysis pipeline for XRF data, dedicated to life science users, connected primarily to NanoMAX and secondly to SoftiMAX.
  • The post-doc is expected to drive the research project connected to mineralization in bone using XRF.
  • Depending on interest, the post-doc may also combine XRF imaging techniques with other methods available at the beamlines (e.g. wide angle X-ray scattering, nano-diffraction, ptychography and STXM).
  • The post-doc is expected to assist with user support for relevant experiments, including experiment preparations and guiding in data analysis
  • The post-doc is expected to be active in workshops, lectures and outreach efforts towards the life science community
  • Opportunities to also supervise MSc degree projects and to assist the group when seeking external research funding is available.

Qualification requirements

Appointment to a post-doctoral position requires that the applicant has a PhD, or an international degree deemed equivalent to a PhD, within the subject of the position, completed no more than three years before the last date for applications. Under special circumstances, the doctoral degree can have been completed earlier.

 
Essential requirements:

  • Very good oral and written proficiency in English.
  • A background in physics, applied mathematics, engineering or other relevant fields
  • Demonstrated experience in synchrotron-related techniques, where experience in XRF Imaging holds special merit
  • Demonstrated experience in X-ray data analysis
  • Scientific computer programming skills, preferably in Python (or C++), and experience with large scale data processing.
  • Demonstrated ability to work in teams and interact with a diverse group of scientists and technical staff in a dynamic environment.

Additional requirements are considered assets

  • Experience from the life-science field with biological tissue characterization is meriting.
  • Experience with collaborative software development for scientific applications is meriting.
  • Experience in providing user support is meriting

Assessment criteria and other qualifications

This is a career development position primarily focused on research. The position is intended as an initial step in a career, and the assessment of the applicants will primarily be based on their research qualifications and potential as researchers.

Particular emphasis will be placed on research skills within the subject.

For appointments to a post-doctoral position, the following shall form the assessment criteria:

  • A good ability to develop and conduct high quality research.
  • Scientific communication skills.

 
Additional assessment criteria:

The post-doc should be able to independently drive his/her own project, as well as writing scientific publications. The post-doc should be able to assist users. International networks and experience is considered positive.

 
Consideration will also be given to good collaborative skills, drive and independence, and how the applicant’s experience and skills complement and strengthen ongoing research within the department, and how they stand to contribute to its future development.

Terms of employment This is a full-time, fixed-term employment of a maximum of 2 years. The period of employment is determined in accordance with the agreement “Avtal om tidsbegränsad anställning som postdoktor” (“Agreement on fixed-term employment as a post-doctoral fellow”) between Lund University, SACO-S, OFR/S and SEKO, dated 4 September 2008.

Instructions on how to apply

Applications shall be written in English. LTH uses a special qualifications portfolio to report and document qualifications. Draw up the application in accordance with the following outline and attach it as three PDF files (in the recruitment system). Read more here:

http://www.lth.se/english/working-at-lth/to-apply-for-academic-positions-at-lth/

Lund University welcomes applicants with diverse backgrounds and experiences. We regard gender equality and diversity as a strength and an asset. We kindly decline all sales and marketing contacts.

To apply, please click the button “Login and apply”

Type of employmentTemporary position longer than 6 months
Contract typeFull time
First day of employmentBy agreement
SalaryMonthly salary
Number of positions1
Working hours100
CityLund
CountySkåne län
CountrySweden
Reference numberPA2020/2399
ContactHanna Isaksson, +46462221749, hanna.isaksson@bme.lth.se
Union representativeOFR/ST:Fackförbundet ST:s kansli, 046-222 93 62SACO:Saco-s-rådet vid Lunds universitet, 046-222 93 64SEKO: Seko Civil, 046-222 93 66
Published30.Jun.2020
Last application date16.Aug.2020 11:59 PM CET

Postdoc Computational modeling of kidney toxin transport

PublishedDeadlineLocation
25 Jun12 JulMaastricht

The department of Cell Biology-Inspired Tissue Engineering (cBITE) at the MERLN Institute for Technology-inspired Regenerative Medicine at Maastricht University in the Netherlands invites applications for a post-doctoral position. The post-doctoral researcher will perform cutting-edge research in computational modeling methods applied to regenerative medicine and more specifically, to kidney toxin transport in microfluidic set-ups, organoid culture systems and/or bioartificial kidney devices.

JOB DESCRIPTION

Regenerative medicine holds the promise to cure many of what are now chronic patients, restoring health rather than protracting decline, bettering the lives of millions and at the same time preventing lifelong, expensive care processes: cure instead of care. More specifically, at present, dialysis and transplantation are the only treatment options for end-stage kidney disease. In the Netherlands alone, 6,500 people currently depend on dialysis, approximately 1,300 of which will die this year. Regenerative medicine offers an alternative treatment in the form of a bioengineered kidney. As a first step, the partners of RegMed XB will work towards creating a functional subunit of a bioengineered kidney. This functional subunit is the nephron, of which there are approximately one million in the adult kidney. In order to inform the in vitro experiments as well as design a bioartificial kidney as an intermediate step towards a fully bioengineered kidney, this project will use computational models to simulate toxin transport and calculate the flow and geometry requirements for adequate toxin removal in various set-ups: microfluidic, organoid culture systems and bioartificial devices.

Project description:

  • Computational modeling of toxin transport, computational fluid dynamics, to inform the design of in vitro kidney organoid experiments and/or bioartificial kidney devices
  • Parameter optimization and sensitivity analysis
  • Analysis and integration of various in vitro/in vivo data for model calibration

What we offer:

  • Computational ecosystem at Maastricht University: Institute for Data Science (IDS), Department of Knowledge Engineering (DKE) and Maastricht Centre for Systems Biology (MacsBio)
  • Excellent computational and experimental facilities to validate the in silico analyses and predictions in vitro/in vivo
  • Interdisciplinary environment within MERLN and the RegMed XB consortium

Project embedding:

The project will be coordinated by the MERLN Institute for Technology-Inspired Regenerative Medicine (http://merlninstitute.com/) at Maastricht University (UM), while closely collaborating with TU Eindhoven, Utrecht University and Leiden University as part of RegMed XB, which stands for “Regenerative Medicine Crossing Borders”. RegMed XB is a virtual institute composed of universities, health foundations, governments and private companies in the Netherlands and Belgium. The partners work together to tackle some of the greatest challenges in regenerative medicine, while building a community of researchers and companies to realize health and economic benefits. RegMed XB is best-suited for those scientists who are driven to make a difference in the lives of patients and who wish to join a growing initiative that promises to integrate entrepreneurial activities with the excellent scientific research performed within the universities. Joining RegMed XB means being part of a community working on research programs aimed to cure a chronic disease (for more information, please visit www.regmedxb.com).

REQUIREMENTS

Requirements and key expertise

  • PhD in data science, computer science, statistics, mathematics, bioinformatics, biomedical informatics, artificial intelligence, or equivalent
  • Demonstrated ability to work independently as well as in a team
  • Strong scientific background and publication record
  • Expertise in computational modeling, computational fluid dynamics
  • Good programming skills (for example Comsol, Matlab, Python, R, VCell)\
  • Basic knowledge of image processing and analysis
  • Affinity with regenerative medicine
  • Good oral and written English communication

CONDITIONS OF EMPLOYMENT

Fixed-term contract: 1 year.

The position is temporary for the duration of the project (12 months). Depending on experience and qualification, the gross monthly salary is scale 10 (max. € 4.402,-), based on a full-time appointment.

The terms of employment of Maastricht University are set out in the Collective Labour Agreement of Dutch Universities (CAO). Furthermore, local UM provisions also apply. For more information look at the website www.maastrichtuniversity.nl > Support > UM employees.

EMPLOYER

Maastricht University

Maastricht University (UM) is the most international university in the Netherlands and, with more than 18,000 students and 4,400 employees, is still growing. The university stands out for its innovative education model, international character and multidisciplinary approach to research and education. Thanks to its high-quality research and study programs as well as a strong focus on social engagement, UM has quickly built up a solid reputation. Today it is considered one of the best young universities in the world

DEPARTMENT

MERLN Institute

The MERLN Institute for Technology-inspired Regenerative Medicine focuses on developing novel and challenging technologies to advance the field of tissue and organ repair and regeneration through, amongst others, the development of high-throughput material platforms to screen cell-biomaterial interactions. MERLN consists of an interdisciplinary team of researchers including fields as (stem cell) biology, materials engineering, chemistry, micro/nanofabrication, additive manufacturing, etc. The scientists at MERLN have an extensive network of collaborators within research institutions in and outside the Netherlands as well as with a number of biomedical companies, including their own spin-off companies, as entrepreneurship is highly fostered.

ADDITIONAL INFORMATION

The application should contain:

  • Cover letter with motivation, fit and preferred starting date
  • Statement of research interests and accomplishments, max 2 pages
  • CV including a list of publications
  • Contact information of two references

For more detailed information you can contact dr. A. Carlier: a.carlier@maastrichtuniversity.nl.

More details:

https://www.academictransfer.com/en/292752/postdoc-computational-modeling-of-kidney-toxin-transport/

RA in Computational Modelling of the Human Knee @University of Leeds

We are looking for a Research Assistant in Computational Modelling of the Human Knee (institute of Medical and Biological Engineering, University of Leeds)

Do you have a strong technical background in computational mechanics with an interest in biomedical engineering? Would you like to work as part of a multidisciplinary team to address a clinically-driven challenge? We are recruiting a Research Assistant in Computational Modelling of the Human Knee (fixed-term position until Sept 2021), part of a major £4M EPSRC Programme Grant on Optimising Knee Therapies. The aim of the programme is to develop preclinical testing methods for early-stage treatments for knee osteoarthritis so their performance can be optimised.

With a degree in medical or mechanical engineering (or a related discipline), you will have a strong background in finite element analysis related to tribology or material interfaces and contact mechanics, and have a proactive approach to working in a multidisciplinary team with engineers, biologists and clinicians.

The role will include (see job advert for full list and details of the post):

  • Working independently to generate finite element models of the knee from existing image data. You will use methods that have been developed and previously documented in-house and proprietary software;
  • Undertaking initial testing of the finite element models using Abaqus software, and trouble-shooting/iteratively changing the models to obtain satisfactory outcomes;
  • Working collaboratively with researchers in the team to curate the models in such a way that they can be readily used by future researchers;
  • Independently writing reports and helping with the preparation of papers for publication;
  • Potentially contributing to the training of undergraduate or postgraduate students, including assisting with the supervision of projects in areas relevant to the project

How to apply

Applications will only be considered through https://jobs.leeds.ac.uk/ — applications open until 17/07/2020
For any queries you may have, please contact: Marlène Mengoni and visit the institute website
The post can be started remotely.

PhD position: Smart design of porous structures for biomedical applications

Applications are invited for a fully-funded PhD studentship at Tecnun, School of Engineering of University of Navarra (San Sebastian, Spain).
Closing date: 1 July 2020

Description: Recent advances in additive manufacturing have made possible to manufacture highly complex porous structures. These structures exhibit a high specific stiffness, while being lightweight, which makes them ideal for several industries. In the biomedical sector, porous structures can be used to treat bone defects, which are the most common cause of physical disability. The objective of this thesis is to design, model and manufacture complex porous structures that meet a series of biomechanical requirements in order to create optimized next-generation orthopaedic implants and scaffolds for bone tissue engineering.

The ideal candidate will have:
– Masters degree in Mechanical Engineering, Biomedical Engineering, Industrial Engineering or similar.
– Knowledge in three or more of the following skills: Finite Element Modelling (i.e. Abaqus, Ansys); Computational Fluid Dynamics (i.e. Ansys Fluent); CAD and/or design tools (i.e. CREO, SolidWorks, Rhinoceros); Numerical computing tools (i.e. Matlab); Programming (i.e. Python).
– Experience in mechanical testing, additive manufacturing, machine learning and/or (medical) image processing will be valued.

How to apply: Please send the following documents via email to ofertastecnun@tecnun.es:
– Motivation letter
– CV (with photo)
– Transcript of Records, including the average grade of the studies;

It would be great if it was advertised in the website. Please let me know if you require further information.

Best wishes,

Dr. NAIARA RODRIGUEZ FLOREZ


Corporate members of the ESB:

AMTI force and motion logo
BERTEC logo
Beta CAE logo
BoB Biomechanics logo
Materialise logo
Nobel Biocare logo