ESBiomech24 Congress in Edinburgh

Junior Postdoctoral Researcher, Machine Learning for Biomechanics @Universitat Pompeu Fabra 

Project
BONE STRENGTH is a public-private collaboration project funded by the Spanish Ministry of Science and Innovation (MICINN) and Agency of Research (AEI) that focusses on the prediction of fragile bone fractures in osteoporosis, out of routine clinical explorations. The collaboration will take place between the technology-based company 3D Shaper Medical SL, and the Barcelona Centre for New Medical Technologies (BCN MedTech) of the Universitat Pompeu Fabra (UPF). Both 3D Shaper Medical SL and UPF are in Barcelona, Spain.

Osteoporosis is a disease associated with the occurrence of fragile fractures in the elderly population, resulting in a huge burden on the society and the healthcare system. The current clinical gold standard for fracture risk assessment is based on areal bone mineral density (aBMD) measured using dual-energy X-ray absorptiometry (DXA) scan. However, it fails to identify up to 50% of the patients eligible for bone-specific pharmacological treatments, resulting in fractures that could be prevented. Bone strength, estimated using quantitative computed tomography (QCT)-based finite element analyses (FEA), has been shown to improve osteoporosis diagnosis and management. However, increased exposure of patients to X-ray radiations is a limitation in clinical practice. 3D-Shaper Medical SL has developed a software (3D-Shaper®) validated for predicting volumetric density and geometrical parameters of the proximal femur and lumbar vertebrae from planar DXA. It can provide clinicians with QCT equivalent parameters without performing a CT scan. 

BONE STRENTH aims to develop a FEA module for 3D-Shaper® that will enable QCT-equivalent bone strength estimations from DXA scans. Through its Biomechanics and Mechanobiology Research Area (BMMB), BCN MedTech has a large experience in computational biomechanics and will develop the Finite Element methods that will be integrated into 3D-Shaper®. Bone strength calculations will be validated against experimentally measured values, and patient-specifically, against QCT-based FE predictions. Performance of the fracture risk assessment will be investigated using case-control clinical cohorts. Furthermore, the 3D-Shaper® FEA module will be used to evaluate the effect of pharmacological treatments, enabling clinical trials with a reduced economic cost and without performing CT scans.

Description of Work

BONE STRENGTH has two Principal investigators (PI). The PI at 3D Shaper Medical SL and coordinator of the project is Ludovic Humbert, Co-founder and CEO of 3D Shaper SL and expert in medical image processing and modelling in biomechanics. The PI at UPF is Jérôme Noailly, head of the BMMB at BCN MedTech, co-director of the SIMBIOSys group at the UPF Department of Information and Communication Technologies (DTIC), and expert in modelling and simulations in biomechanics and (systems) biology. 

The successful Candidate will be a junior postdoctoral researcher, with proven experience in data science and computer simulations in biomedical engineering. He/She will be based at DTIC, UPF and will be responsible for osteoporosis patient stratification based on both clinical and biomechanical information, and for the development of a meta (surrogate) biomechanical model of the femur and the vertebra, to estimate bone strength at reduced computational cost, in collaboration with 3D Shaper Medical SL. Scientific and technical competencies are necessary in modelling and machine learning in biomechanics. Previous experience in physics-based computer simulations and bone biomechanics are welcome. The Researcher will collaborate with a small team of researchers dedicated to the same project and will report periodically to the respective PI of UPF and 3D Shaper Medical SL, to ensure (i) that the timelines of the project and deliverables are met, and (ii) that the project results can be properly disseminated through scientific and medical congresses and journals. Hence, communication, teamwork and leadership skills will be chiefly important.

At UPF, the successful Candidate will evolve in the highly international environment of DTIC. There, he/she will be able to interact directly with the 60+ investigators of BCN MedTech who gather expertise in medical image analysis and processing, machine learning and data science, complexity analysis, medical devices, and computational biomechanics and biology. Daily working interactions related to the project shall mostly happen with the teams of both the BMMB and the SIMBIOSys group. While day to day working language will be English, Spanish language fosters social interactions and (the learning thereof) is highly recommended.

Contract

The employment for BONE STRENGTH shall be for a period of up to 1,5 years. The successful candidate will be offered a full-time postdoctoral research contract for the implementation of BONE STRENGTH. The number of working hours is 37,5 h per week and 1640 h per year. The gross salary is 33.715,68 € per year. On top of this, social benefits (health, unemployment, retirement) are covered by the employer (UPF).

Requirements

Candidates must:

  • Hold a BSc and a MSc in either Computer Science, Applied Mathematics, Physics, or any related field
  • Have a PhD title, with a doctoral thesis focussed on Machine learning in biomedical engineering
  • Be able to demonstrate a proficient level of English, both written and spoken. Language certificate is not mandatory but proper English level will have to be demonstrated during the interview (see selection criteria)

Selection

1st phase: remote pre-selection (0-100 points): 

  • The Scientific, Technological & Academic excellence will be considered, based on:
  • A full CV that shall include, among others (0-70 points):
    – A description of the current or, in case of unemployment, of the more recent position
    Education and professional tracks
    – Research experience supported by evidence such as: scientific publications; patents; participation in scientific congresses; participation in research projects including any leadership information; …
    – International research collaborations
    – International mobility experience (research stays longer than three weeks)
    – Scientific mentoring activities: (co-)supervision of PhD, MSc and/or BSc theses; participation in scientific courses, workshops, summer or winter schools as instructor; … 
    – Roles in academia and/or in scientific societies 
    – Activities in science communication & outreach: press releases; online videos; participations to events for non-expert public; …
    – Recognitions and merits: individual competitive grants; awards, invited talks, …
    – A narrative biosketch with a section of the five major achievements of the CV   
  • Two reference letters provided by international scholars (0-15 points)
  • Statement of purpose: past research experience; motivation to apply to this position; academic fit; contribution of the project to future careers plans; … (0-15 points)

To pass to the 2nd phase (see below), the Candidate must have scored at least 75/100 during the remote review.

IMPORTANT: the publication records will be double checked through online databases (Web of Science, Scopus, Google Scholar, ResearchGate, ORCID, …). The Candidate is encouraged to provide the link of his/her choice in the CV. Failure to access to any online database of the scientific production of the researcher will justify the exclusion of Applicant from the selection process.

2nd phase: interview(s) (0-100):

Should the Applicant be preselected during the 1st phase, (s)he will be informed by email, for a 2nd phase of selection. The 2nd phase will consist in at least one interview through which:

  • the English language (eliminatory if deemed insufficient),
  • the motivation (0-15 points), 
  • the proactive behaviour (0-15 points), 
  • the capacity to work collaboratively (0-15 points), 
  • the organizational skills (0-15 points), 
  • the communication skills (0-15 points), and
  • the capacity to engage in a scientific discussion and manage problems (0-15 points), 

 will be assessed, among other aspects (0-10 points will be reserved for the general impression).

The interview must lead to a score of at least 75/100, so that the Candidate can be considered for the final decision.

Final decision 

The final decision will be the result of a consensus made by the Recruitment Committee that will consider the results of both selection phases 1 and 2. The Applicant will be informed of the selection outcome by email.

IMPORTANT: The referees might be contacted by the Recruitment Committee, to reach the final decision.

Application

https://apply.interfolio.com/123571

Post-doctoral Research Associate in Computational Spine Biomechanics @University of Sheffield

The Insigneo Institute is looking to appoint a Post-doctoral Research Associate in Computational Spine Biomechanics to work on the recently awarded Horizon Europe Project, METASTRA – Computer-aided effective stratification of oncologic patients with vertebral metastases for personalized treatment through robust and validated numerical tools. The project strives to provide a combination of models biomechanically validated and demonstrated in relevant clinical environments that will be incorporated in a clinical decision support system.

Working with Professor Damien Lacroix and Dr. Enrico Dall’Ara you will work to advance the modelling of patients with vertebral metastases for the prevention of fractures to reliably stratify patients based on their fracture risk.

We are seeking candidates with an excellent PhD in biomechanics (or a related discipline). A solid knowledge of finite element modelling, expertise in using finite element software with high level of sophistication (e.g. use of user-subroutines in Abaqus, Ansys) and experience of working as a team member to collaborate, co-operate and participate with others to achieve common objectives and to share experience and ideas is essential.

Deadline for applications: 26th April 2023 

To apply please visit this webpage:

https://jobs.shef.ac.uk/sap/bc/webdynpro/sap/hrrcf_a_unreg_job_search?sap-client=400&sap-syscmd=nocookie&sap-wd-configId=ZHRRCF_A_UNREG_JOB_SEARCH&sap-ie=edge&utm_source=university%20website&utm_medium=link&utm_content=jobs&utm_campaign=jobs-link#

Use as keyword: Metastra

And click on Apply!

More information:

Postdoc vacancy in microstructural imaging of blood vessels and tissue biomechanics @Erasmus MC / TU Delft.

Interested in diving into the fascinating world of microstructural imaging of blood vessels and linking this to tissue biomechanics? There is an open position for a post-doctoral researcher in the Biomechanics Group at Erasmus MC / TU Delft.


Application links and more info: https://www.werkenbijerasmusmc.nl/en/vacancy/88161/postdoctoral-researcher-polarization-sensitive-optical-coherence-tomography-ps-oct

PhD vacancy in the field of experimental vascular biomechanics @Erasmus MC / TU Delft

Interested in diving into the fascinating world of vascular biomechanics and imaging? There is an open position for a PhD candidate in the field of experimental vascular biomechanics in the Biomechanics Group at Erasmus MC / TU Delft.


Application links and more info: https://www.werkenbijerasmusmc.nl/en/vacancy/88181/phd-position-experimental-vascular-biomechanics-11.05.23.td1

PhD vacancy on the effects of footwear on the biomechanics of an arthritic foot @Mines Saint-Etiennes (IMT)

The INSERM U1059 Sainbiose laboratory is looking for a PhD student in the framework of a new French National Research Agency (ANR) project “Insole Optimization for Rheumatoid Arthritis patients” (coll. CHU Saint-Etienne, INRIA Alpes).

Rheumatoid arthritis (RA) is the most common chronic inflammatory joint disease, with a prevalence of about 0.5%. RA is a peripheral polyarthritis that affects the hands and feet: foot function is compromised, which is accompanied by changes in plantar pressures and gait disorders that have a strong impact on daily activities. Foot pain and disability can be reduced with customized foot orthotics and therapeutic footwear. The mechanisms involved in this treatment lack methodological evaluation. In particular, the design of the insoles and their relationship to internal effects such as joint pressure and soft tissue deformities have not been studied due to the difficult nature of such studies in a clinical environment.
From a medical point of view, the INORA project aims to understand, through patient-specific numerical biomechanical models, the mechanisms of action of shoes and orthopedic insoles in order to propose a well-founded design methodology. From a more fundamental point of view, these models will allow the discovery of the mechanical determinants of pain relief, which will promote the long-term well-being of patients.


The thesis project will focus on the mechanical finite element modeling of a moving foot, and then the optimization of the medical device (sole, shoe) in order to minimize the stresses in the critical pain areas. We are looking for a (bio) mechanical engineer with good numerical skills, interested in health applications and able to integrate in a multi-disciplinary research team.

More info:

Master Thesis in Biomechanics @Julius Wolff Institute, Charité

DESIGN OF A BIOMECHANICALLY OPTIMIZED SCAFFOLD FOR MANDIBULAR RECONSTRUCTION

The Julius Wolff Institute is within the university structure of the Charité – Universitätsmedizin Berlin. As a research institute, we run applications and basic research in the fields of orthopedics and trauma surgery. Our main research field is the regeneration and biomechanics of the musculoskeletal system.
Background
Mandibular reconstruction after tumor resection is a challenging procedure usually performed using an autologous vascularized bone graft fixated with reconstruction plates (Figure 1). However, the non-physiological biomechanical environment induced at the injured site and donor site morbidity can negatively impact the healing outcome and patient quality of life. Tissue engineering allows exploring alternative solutions to traditional bone grafts such as scaffolds, i.e. structures able to support the formation of new functional tissues. However, if scaffolds can biomechanically support the bone healing process in mandibular reconstruction remains to be investigated.
Your Responsibilities
In this context, the Julius Wolff Institute is looking for a highly motivated individual for an internship or Master thesis. You will develop finite element models of reconstructed mandibles and design a scaffold to investigate its biomechanical impact on the healing outcome. The student will also simulate several biting tasks, design implant fixation and study their effect on the biomechanical environment within the mandibular defect. The project is part of a close collaboration with clinical partners.

More information:

3 postdoctoral job offers in Computational Bone mechanics @UPF, Barcelona

We are offering three postdoctoral positions in the area of Biomechanics & Mechanobiology at BCN MedTech, Department of Information and Communication Technologies, University Pompeu Fabra, Spain, to work in computational biomechanics applied to fragile bone fracture prediction in clinical cohorts:

  • Data science & surrogate modelling (1.5 years, full time): Junior postdoctoral researcher with expertise in machine learning applied to biomedical engineering: https://apply.interfolio.com/121396 – Deadline March 7th 2023
  • Open-source finite element code development & implementation (2 years, full time): Postdoctoral researcher with expertise in open-source finite element software and computational continuum mechanics: https://apply.interfolio.com/121326 – Deadline March7th, 2023
  • Patient-Specific finite element modelling and computational bone biomechanics (Junior leader, 2.5 years, full time): Senior postdoctoral researcher with at least two years of postdoctoral research experience in bone finite element analysis: https://apply.interfolio.com/121397 – Deadline: March 7th, 2023

Newton Fellowship in computational cardiovascular biomechanics

Newton International Fellowships are prestigious postdoctoral fellowships for researchers who want to work in the UK. The scheme is accepting applications now with a deadline of 28th March 2023. The fellowship provides three years of research funding, and only those with a PhD from outside of the UK are eligible. More details and eligibility criteria are available at https://royalsociety.org/grants-schemes-awards/grants/newton-international/

Do you have background in computational tissue biomechanics? Are you interested in cardiovascular systems and the above scheme? If so, check our Computational Biomechanics Research Group page or my staff page for more information on our research. We would be happy to host excellent researchers with relevant background and interests. Email me at ankush.aggarwal@glasgow.ac.uk if you would like to discuss this fellowship opportunity.

PhD Position on Computational modeling of fibrotic scarring @Maastricht University

Regenerative medicine (RM) holds the promise to cure many of what are now chronic patients, restoring health rather than protracting decline, bettering the lives of millions and at the same time preventing lifelong, expensive care processes: cure instead of care. The scientific community has made large steps in this direction over the past decade, however our understanding of the fundamentals of cell, tissue and organ regeneration and of how to stimulate and guide this with intelligent biomaterials in the human body is still in its infancy. Materials properties such as elasticity, topography, hydrophobicity, and porosity have all been shown to influence cell fate, and the introduction of high-throughput combinatorial approaches is expediting research. However, in order to improve the design of synthetic biomaterials, it is crucial to understand the physiological cell-biomaterial interactions and how these influence the tissue remodeling process. This research project aims to use in silico models to simulate physiological and fibrotic cell-ECM interactions, including dynamic tissue remodeling through ECM deposition and alignment, to improve our fundamental understanding thereof and use the obtained knowledge to design improved synthetic matrices.  

Project description:

  • Computational modeling of tissue remodeling to inform the design of synthetic matrices
  • Multiscale modeling: coupling ABM to FEM to investigate the role of dynamic tissue compositions and alignment
  • Parameter optimization and sensitivity analysis
  • Analysis and integration of various in vitro/in vivo data for model calibration

More information:

https://www.academictransfer.com/en/323433/phd-position-merln-computational-modeling-of-fibrotic-scarring/

Post-Doc in Clinical-related Musculoskeletal Biomechanics @ Krems, Austria

POST DOC IN MUSCULOSKELETAL BIOMECHANIK (PROF. PAHR) 40 HOURS (F/M/D) -2 YEARS POSITION

The Karl Landsteiner University of Health Sciences (KL) is part of an academic and research community located at the Campus Krems, and includes a network of comprising teaching hospitals in St. Pölten, Krems and Tulln. The university offers degree programs in Human Medicine and Psychology and are tailored to the requirements of the Bologna model, opening the door to new, cutting-edge health professions. KL is committed to raising its profile in specific areas of biomedicine, biomedical engineering, and biopsychosocial sciences by entering into strategic academic and research partnerships with other institutions.

YOUR TASKS

  • Independent experimental research
  • activities in the field of musculoskeletal biomechanics
  • Publication activities and writing of applications for external funding Teaching and support in administrative tasks
  • Supervision of Bachelor, Master and
  • PhD students Administration and 1aintenance of the laboratory infrastructure
  • Support of the laboratory head

YOUR PROFILE

  • Completion of a suitable doctorate (e.g. mechanical engineering, physics, biomedical engineering, …)
  • In-depth knowledge in biomechanical testing (material and/or implant testing incl. programming of measurement data analysis)
  • Appropriate track record of publications in scientific journals as well as conference contributions.
  • Experience with clinic-related research and imaging techniques (CT or MRI) would be an advantage
  • Good German (or willingness to learn German in the short term) and very good English skills, both written and spoken Process-oriented, accurate, structured way of working with a strong ability to prioritize
  • Open, resilient and flexible personality with a professional attitude

YOUR PERSPECTIVE 

You can expect a challenging job in an internationally visible and highly motivated team -we offer flexible working hours, home office options, a paid lunch break, health care and many other benefits . The Karl Landsteiner University of Health Sciences is dedicated to achieving a balanced mix of male and female academic and non-academic staff. Consequently, applications from female candidates are particularly encouraged. People with disabilities who meet the required qualification criteria are expressly invited to apply and are given special consideration. The minimum classification is € 3,700 (40 hrs) gross per month. Readiness for overpayment exists with appropriate experience and qualification. Fixed-term contract for 2 years, possibility of extension (path to permanency / tenure) in case of appropriate performance.

APPLICATION

Applications should include a motivation letter, curriculum vitae and credentials and should be mailed by 22 nd of Feburary 2023 referring jobnumber “2301” to Ms. Christina Schwaiger to bewerbung@kl.ac.at


Corporate members of the ESB:

AMTI force and motion logo
BERTEC logo
Beta CAE logo
BoB Biomechanics logo
Materialise logo
Nobel Biocare logo