ESBiomech24 Congress in Edinburgh

Post-doc position in the Computational Biomechanics Research Group at University of Glasgow

A one-year postdoc position is available in the Computational Biomechanics Research Group at University of Glasgow. The project is aimed at combining image segmentation with biomechanical calculations and requires experience in scientific code development and nonlinear biomechanics.

For more information on the position, please check https://www.jobs.ac.uk/job/CCF584/research-assistant

and https://my.corehr.com/pls/uogrecruit/erq_jobspec_version_4.jobspec?p_id=044305

More information on my research group can be found at http://userweb.eng.gla.ac.uk/ankush.aggarwal/

and https://www.gla.ac.uk/schools/engineering/staff/ankushaggarwal/

If you have any questions about the position, please email: ankush.aggarwal@glasgow.ac.uk

Postdoc position in wood mechanobiology @ the Institute for Mechanics of Materials and Structures, TU Wien

The growth of trees, and the resulting wood microstructure, is substantially influenced by the mechanical loading to which the respective tree structure is subjected. The Austrian Science Fund (FWF – Fonds zur Förderung der wissenschaftlichen Forschung) funds, within the scope of the 1000 ideas programme, a two-year project aiming at the development of computational tools which allow for predicting how and to which extent trees grow under certain mechanical boundary conditions. While so far the field of plant mechanobiology has been mainly driven forward through experimental studies, this project bears the potential of launching a completely new (sub-)field, namely computational plant mechanobiology, by reconciling the theoretical concepts of classical beam mechanics, multiscale wood mechanics, and multiscale systems biology.

More information can be found here: https://www.imws.tuwien.ac.at/fileadmin/mediapool-werkstoffe/Bilder/Forschung/Stellenausschreibung_aktuell.pdf

Research Fellow in Experimental Biotribology of the Human Natural Knee @University of Leeds

Are you an ambitious researcher looking for your next challenge? Do you have an established background in biomedical engineering? Do you want to further your career in one of the UKs leading research intensive Universities?

This project is part of a £4M EPSRC Programme Grant on Optimising Knee therapies, held within the Institute of Medical and Biological Engineering (iMBE). The aim of the programme is to develop preclinical testing methods for early-stage treatments for knee osteoarthritis so their performance can be optimised. In the UK, one third of people aged over 45 have sought treatment for osteoarthritis. The knee is the most common site for osteoarthritis and there is a major unmet clinical need for effective earlier stage interventions that delay or prevent the requirement for total knee replacement surgery. Such treatments involve repair or replacement of diseased or damaged tissues in the knee joint, such as the meniscus, or a small region of cartilage and underlying bone.

The aim of this project is to develop, evaluate and apply an experimental simulation model of the natural human knee joint, specifically to investigate the biotribological and biomechanical function of early knee interventions.  Examples of interventions include total meniscus replacement and cartilage repair. You will have a strong background in biotribology, biomechanics, bioengineering or a closely related subject. Due to the environment within the iMBE, you will have a proactive approach to working in a multidisciplinary team with engineers, biologists and clinicians.

More information: https://jobs.leeds.ac.uk/Vacancy.aspx?ref=EPSME1028

Postdoc: Computational modeling of kidney toxin transport @Maastricht University

The department of Cell Biology-Inspired Tissue Engineering (cBITE) at the MERLN Institute for Technology-inspired Regenerative Medicine at Maastricht University in the Netherlands invites applications for a post-doctoral position. The post-doctoral researcher will perform cutting-edge research in computational modeling methods applied to regenerative medicine and more specifically, to kidney toxin transport in microfluidic set-ups, organoid culture systems and/or bioartificial kidney devices.

Regenerative medicine holds the promise to cure many of what are now chronic patients, restoring health rather than protracting decline, bettering the lives of millions and at the same time preventing lifelong, expensive care processes: cure instead of care. More specifically, at present, dialysis and transplantation are the only treatment options for end-stage kidney disease. In the Netherlands alone, 6,500 people currently depend on dialysis, approximately 1,300 of which will die this year. Regenerative medicine offers an alternative treatment in the form of a bioengineered kidney. As a first step, the partners of RegMed XB will work towards creating a functional subunit of a bioengineered kidney. This functional subunit is the nephron, of which there are approximately one million in the adult kidney. In order to inform the in vitro experiments as well as design a bioartificial kidney as an intermediate step towards a fully bioengineered kidney, this project will use computational models to simulate toxin transport and calculate the flow and geometry requirements for adequate toxin removal in various set-ups: microfluidic, organoid culture systems and bioartificial devices.

More information can be found at: https://www.academictransfer.com/en/294108/postdoc-computational-modeling-of-kidney-toxin-transport/

POSTDOC position at SayFood, Thiverval-Grignon, France: Quantitative ultrasound for the investigation of tongue-food interactions during oral processing.

Context: In the framework of the ANR project QUSToFood (ANR-17-CE21-0004), a postdoctoral position is open at UMR SayFood. QUSToFood proposes to use Quantitative Ultrasound (QUS) methods for the study of texture perceptions resulting from the mechanical interactions between the tongue and the palate during the oral processing of food. These interactions induce the stimulation of tongue mechanoreceptors and enable the continuous evaluation of the mechanical status of food all along oral processing (from introduction into the mouth to the triggering of swallowing in safe and comfortable conditions). QUS are non-destructive, non-invasive and provide real-time measurement which can be employed both in vitro and in vivo, directly on the individual. The method developed in QUSToFood could thus help to characterize potential losses of sensory quality induced by food and agro ecological transitions, or to meet pleasure and health criteria for specific populations such as infants with sensory processing disorders or seniors suffering from swallowing disorders.

Keywords: Quantitative ultrasound; Biomechanics; Rheology; Tribology; Food; Tongue; Oral processing; Texture


Candidate: The ideal candidate must have completed a PhD in the field of physics, mechanics, biomedical or food engineering. Experience and interest in signal and image processing, and in the in-house design of experimental systems would be an advantage. In all cases, the candidate must have a strong interest and aptitude for multidisciplinary approaches, as this project combines biomechanics, acoustics, rheology, tribology, instrumentation, signal and image processing, food science and sensory analysis.

Contract and location: This contract is for 24 months and the start date is flexible, but shall not be later than January 1, 2021. The gross salary will be from 2500€, depending on the number of years after PhD. The project will be carried out in the labs of UMR SayFood located in the AgroParisTech center of Thiverval-Grignon (a short bus ride from the “Plaisir Grignon” train station, which serves the center of Paris in 25 min). The relocation of the laboratories to a new site in Palaiseau is planned for the second half of the year 2022. The work schedule will be adapted accordingly.


Application: The selection process will start immediately and go on until the position is filled. To apply or inquire further, please contact Vincent Mathieu at vincent.mathieu@inrae.fr. Please include a C.V. and a letter of motivation, along with relevant publications and the name of references.

More information can be found here:

8 PhD positions in Intervertebral disc Biomechanics and Mechanobiology – H2020 ITN Disc4All

The European community requires early stage researchers (ESRs) who can work across the boundaries of traditional disciplines, integrating experimental and in silico approaches to understand and manage highly prevalent multifactorial disorders, such as musculoskeletal disorders. The Disc4All training network utilises intervertebral disc degeneration (LDD) leading to low back pain (LBP) as a relevant application for the integration of data and computational simulations in translational medicine, to enable rational interpretations of the complexity of the interactions that eventually lead to symptoms.


LBP is the largest cause of morbidity worldwide, yet there remains controversy as to the specific cause leading to poor treatment options and prognosis. LDD is reported to account for 50% of LBP in young adults, but the interplay of factors from genetics, environmental, cellular responses and social and psychological factors is poorly understood. Unfortunately, the integration of such data into a holistic and rational map of degenerative processes and risk factors has not been achieved, requiring creation of professional cross-competencies, which current training programmes in biomedicine, biomedical engineering and translational medicine fail to address, individually.


Disc4All aims to tackle this issue through collaborative expertise of clinicians; computational physicists and biologists; geneticists; computer scientists; cell and molecular biologists; microbiologists; bioinformaticians; and industrial partners. It provides interdisciplinary training in data curation and integration; experimental and theoretical/computational modelling; computer algorithm development; tool generation; and model and simulation platforms to transparently integrate primary data for enhanced clinical interpretations through models and simulations. Complementary training is offered in dissemination; project management; research integrity; ethics; regulation; policy; business strategy; and public and patient engagement. The Disc4All ESRs will provide a new generation of internationally mobile professionals with unique skill sets for the development of thriving careers in translational research applied to multifactorial disorders.

This PhD project will address 3D modelling of the lumbar spine from medical images. Methods using deep learning and statistical modelling will be developed to segment the lumbar vertebrae and intervertebral disks in 3D MRI sequences and CT image, and provide 3D subject-specific lumbar spine models from 2D medical images (X-rays or mid-sagital MR images) used in clinical practices. Those methods will be used in combination with finite-element-based simulation methods to develop a diagnosis and predictive tool for intervertebral disk degeneration.

Type of contracts: temporary (36 months)
Job status: full-time
Hours per week: See individual job offers
Offer starting dates: Between November 1st, 2020 and January 31st, 2021
EU Research Framework: H2020 MSCA-ITN-ETN
Marie Curie Grant Agreement Number: 955735

More information:

Post-doc position @University of Pavia: computational mechanical models of soft tissues

We are looking for talented scientists and engineers to join the Synthetic Physiology Lab at the University of Pavia in Italy. Traditional synthetic biologists use DNA parts to program cell function. Similarly, we study how to control tissue function using extracellular matrix (ECM) components. Our first goal is to reverse engineer human heart development in a project funded by the European Research Council and entitled “Synthetic Matrix Biology: Designer matrices to program healthy and diseased myocardial morphogenesis.”


For this project, we are looking for a computational scientist. The ideal candidate will have experience working with mechanical models of soft materials and (dissipative) particle dynamics in synthetic or biological systems. Previous work in the cardiac field, with LAMMPS/Chaste packages, parallel programming (especially if GPU-enabled), or cloud computing is a plus. At the same time, we will be doing things differently than most efforts in this field, so anyone with great scientific programming skills and interested in using particle dynamics to describe cell and tissue mechanics is welcome.

More information in the attachment:

Post-doc offer @INSERM, Computational Modeling of Aortic Aneurysm Progression

Keywords: mechanobiology, finite-element, constrained-mixture theory, smooth muscle cells.


Academic context: This project will take place at Sainbiose (UMR INSERM-U1059 – Mines Saint-Etienne, France), in a group working in the domain of arterial mechanobiology, in collaboration with vascular surgeons. It is funded by an ERC consolidator grant.


Scientific context: The mechanical response of arterial tissue is a consequence of the arterial microstructure morphology. In the past decade, the different fiber networks (namely the collagen and elastin networks) have been investigated because of their important role in the arterial mechanics. Their maintenance is achieved by different intramural cells (smooth muscle cells, fibroblasts). Our objective is to investigate computationally how the impairment of important biological pathways involved in this maintenance can have dramatic effects on the integrity of fiber networks and lead to an aneurysm and a dissection in the aorta.


Project summary: During the past years, within the ERC project Biolochanics*, our group developed a mechanobiological model of the arterial wall. It can predict the non-linear mechanical behavior of arteries from their microstructure and simulate the growth and remodeling effects using the constrained mixture theory and the concept of maintaining stress homeostasis in the vessel wall. Presently, only the effects of proteolytic injury have been considered as triggers of growth and remodelling. However, recently published contributions show that impairment of mechanosensitivity and mechanotransduction of smooth muscle cells is a major driver of aneurysm development. Using our computational models and existing experimental data in our group, and integrating innovative theoretical developments, the successful applicant will investigate these effects computationally to eventually propose patient-specific simulations of aortic aneurysm progression. He/she will also be in charge of validating the proposed model.


Student profile: background in computational mechanics and mechanobiology. The ideal applicant has motivation for work at the interface between disciplines.


Administrative aspects: This is a 12-month position, renewable, starting 1st October 2020.
If you are interested, please send, via email, a curriculum vitae and a cover letter, to Prof. Stéphane Avril (avril@emse.fr)

*https://www.mines-stetienne.fr/en/research/projects/biolochanics/

Postdoc position – In-silico multiscale analytics for personalized cancer diagnosis @University of Zaragoza

PostDoc position in the frame of a H2020 project: PRIMAGE / PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, empowered by imaging biomarkers (G.A. nº. 826494)

The PRIMAGE project is looking for a highly motivated researcher interested in working in an ambitious multidisciplinary project to work at the University of Zaragoza (Spain). PRIMAGE proposes a cloud-based platform to support decision making in the clinical management of malignant solid tumours, offering predictive tools to assist diagnosis, prognosis, therapies choice and treatment follow up, based on the use if novel imaging biomarkers, in-silico tumour growth simulation, advanced visualisation of predictions with weighted confidence scores and machine-learning based translation of this knowledge into predictors for the most relevant, disease-specific, Clinical End Points.

We are hiring a post-doc with certified experience in other research groups in the following tasks: advance computational simulation of living tissues, Imaging post-processing, management and coordination of research projects.

Deadline for applications: 15th September 2020

https://euraxess.ec.europa.eu/jobs/548404

PostDoc @Heriot-Watt Edinburgh

Postdoctoral Research Associate in Multiscale Mechanics of Mineralised Tissues

Vacancy Details

Job ReferenceIRC27904
Closing Date8 Aug 2020 23:00 (UK time)
Salary£32,817– £38,017 (Grade 7)
LocationEdinburgh
DepartmentInstitute of Mechanical, Process and Energy Engineering
CategoryAcademic and Research
StatusFull-time
Duration of Contract (months)36 months
Informal enquiries by email to:Dr Uwe Wolfram at u.wolfram@hw.ac.uk
How to apply:https://www.hw.ac.uk/uk/jobs/job_SVJDMjc5MDQ.htm

About our Team

We are excited to be able to recruit a postdoctoral research associate in the area of Multiscale Mechanics of Mineralised Tissues to the Biomechanics group at Heriot-Watt University. The selected candidate will join a multidisciplinary team to work on a Leverhulme Trust funded project seeking to understand rapid cold-water coral habitat loss in a future ocean. Specifically, we seek to understand how climate change induced ocean acidification and bioerosion affect the multiscale mechanical properties of cold-water coral reefs and how these effects may accelerate reef-habitat loss.

The selected candidate will be based at Heriot-Watt University joining a multidisciplinary team working on multiscale mechanics of biologic tissues and structures. This is a joint project with the Changing Oceans Group at the University of Edinburgh, which conducts incubation experiments on live and dead coral skeletons under projected future conditions. The selected candidate will benefit from co-supervision by Dr Sebastian Hennige of the Changing Oceans Group along with visiting scholar access to University of Edinburgh.      

Detailed Description of Position

Ocean acidification threatens deep-sea coral reefs and could lead to dramatic and rapid loss of the habitat they make. Here we combine biology and engineering approaches to quantify the risk and time scales of such habitat loss. Increases in porosity and loss of skeletal material in structurally critical parts of the coral reef foundation could lead to physical habitat collapse on an ecosystem scale, reducing its potential to support associated biodiversity. Our unique interdisciplinary approach will identify the timescales and conditions such ‘tipping points’ would occur within, to allow more effective future management of these vulnerable ecosystems.

To do so, we seek to (i) quantify skeletal dissolution rates under different future oceanic conditions (primarily delivered by University of Edinburgh); (ii) develop a simulation framework that allows quantification of failure rates of coral skeletons; (iii) use results from (i) and (ii) to scale up to larger reef-type structures and estimate tipping points of habitat loss. The successful candidate will also develop and conduct characterisation and validation experiments based on extensive expertise in multiscale experimentation. The successful candidate will work closely with our collaborators (with regular joint meetings) to link results of (ii) and (iii) to the marine-biological aspects (i). The successful candidate will also work with our partners within JNCC (Joint Nature Conservation Committee) and NOAA (National Oceanic and Atmospheric Administration, US Department of Commerce) to foster dissemination along the policy making route. This is an exciting new project with scope to contribute significantly to tackling some of the most pressing global challenges.

The successful candidate will make use of our excellent facilities including dedicated biomedical tissue laboratories, and cutting-edge equipment including a broad suite of tissue processing equipment, mechanical testing equipment, imaging equipment (micro-CT, microscopy and optical coherence tomography) and a dedicated node on a high-performance cluster for computation.

We are looking for someone who is ambitious and collaborative, with a passion for developing solution for pressing global challenges.  The post will be for 36 months.  There may be the opportunity for the post holder to develop their own fellowship applications during this post, with support from the PI.

The successful candidate will work in two departments that have an international reputation for engineering, strong expertise in biomedical engineering as well as marine biology, and world-class equipment and facilities.  

Key Duties and Responsibilities

The successful appointee will be expected to undertake the following:

  • Plan and execute work plans to progress investigations into the multiscale mechanical behaviour from ‘crystal building block to reef’
  • Lead and contribute to research dissemination (i.e. papers and conference attendance)
  • Work closely with the PI and collaborators to analyse, interpret, and present experimental and modelling data
  • Work closely with other postdoctoral associates, PhD students and collaborators to ensure smooth research team function
  • Participate actively in group meetings
  • Take a leadership role to ensure the effective running of computational analyses.
  • Participate in outreach activities, which may involve talks for the general public, attendance at science festivals or and preparation of demonstrators.
  • Participate in advisory meetings with Joint Nature Conservation Committee (JNCC), which may involve talks to executive decision makers
  • Responsibilities will also include assistance in the day-to-day running of the simulations and computational analyses using own servers as well as HWUs HPC cluster, liaising with companies and external collaborators.
  • Contribute, under supervision, to the planning of research projects, including the development of new grant/contract proposals.

Please note that this job description is not exhaustive, and the role holder may be required to undertake other relevant duties commensurate with the grading of the post.  Activities may be subject to amendment over time as the role develops and/or priorities and requirements evolve. 

Education, Qualifications and Experience

this will form the basis of your selection criteria and shortlisting. Please use the examples below and delete /add as appropriate.

Essential Criteria

  • Applicants should a PhD in biomedical engineering, physics, material science, or a related subject (Applicants should have submitted their PhD thesis first draft by the start date.) broadly in one of the following areas:
    • Multiscale constitutive modelling (ideally but not necessarily biologic hard or soft tissues)
    • Multiscale mechanics of materials (mathematically, experimentally, or theoretically)
    • Image based multiscale computational modelling
  • Experience of programming and simulation
  • Working with image data (key word: imaged based modelling)
  • Experience working in a multidisciplinary environment/team and openness to dive into a novel research field in biomechanics
  • Excellent verbal and written communication skills
  • A record of high quality, peer-reviewed publications and evidence of contribution to the writing of these publications proportionate to opportunity.
  • Willingness and ability to travel for dissemination, outreach, and public engagement activities.

Desirable Criteria

  • Experience in conducting validation and material characterisation experiments (nanoindentation, micropillar testing, macroscopic testing, or similar)
  • Experience in using/developing artificial neural network approaches
  • Experience of research-student supervision.

When applying, please include a cover letter addressing these selection criteria. 

The intention is to hold the interviews towards the end of week commencing 17/8/2020.

Job Share

At Heriot-Watt University we understand that being diverse makes us better which is why we support a culture of respect and equal opportunity, and value diversity at the heart of what we do. We want to increase the diversity of our workplace to underpin a dynamic and creative environment.

While this is a full-time post, flexible percentage working regimes may be possible for the right candidate.


Corporate members of the ESB:

AMTI force and motion logo
BERTEC logo
Beta CAE logo
BoB Biomechanics logo
Materialise logo
Nobel Biocare logo