10th World Congress of Biomechanics 2026 in Vancouver

PhD in computational cardiovascular biomechanics @University of Glasgow

I am looking for motivated students to join my research group and work towards their PhD in the area of computational cardiovascular biomechanics.

Project Summary: Almost 30% of all deaths globally are related to cardiovascular diseases. The overall aim of computational cardiovascular biomechanics is to help improve the diagnosis of these diseases (faster, earlier, more precise), provide better surgical outcomes, and design devices that last longer. To achieve that aim, we study the biomechanical properties of tissues and cells comprising the cardiovascular system using a combination of in-vivo imaging, ex-vivo and in-vitro testing, and in-silico modeling. The projects can be divided into model development (at organ and cellular scales) and method development (based on imaging and using data science approaches). A few examples of specific projects are:

1) Multiscale modeling of the heart muscle
2) Modeling of endothelial cells based on in-vitro experiments
3) Developing methods for biomechanical characterisation of tissues from ultrasound images
4) Designing optimal experiments for cardiovascular tissues under uncertainty

During this project, the student will have opportunities to:

  • Develop skills necessary to work at the interface of engineering and biomedical science
  • Publish papers in high-quality journals
  • Present research results at international conferences
  • Learn about nonlinear finite element analysis, nonlinear mechanics, multiscale modeling, image-based analysis, data science, and other numerical techniques
  • Learn about experimental and clinical validation
  • Collaborate with our international academic and industrial partners
  • Interact within the Glasgow Centre for Computational Engineering with other researchers (GCEC) and across departments with biomedical scientists and clinicians

Eligibility: Candidates must have an undergraduate degree in a relevant field, such as Mechanical Engineering, Biomedical Engineering, Civil Engineering or Mathematics, with a minimum 2.1 or equivalent final grade. A background in mechanics and knowledge of finite element modeling would be necessary. Programming skills will be required for computational modeling.

Application: The deadline for applications is 31 May 2021, and the application process consists of two parts:
1) On-line academic application: Go to https://www.gla.ac.uk/postgraduate/research/infrastructureenvironment/ and click on the ‘Apply now’ tab. Applicants should attach relevant documents such as CV, transcripts, references and a research proposal.
2) The scholarship application: Complete the application form found at the following webpage: https://www.gla.ac.uk/media/Media_766095_smxx.docx and attach a letter of support from a potential supervisor.  Both the application form and supporting letter should be emailed to eng-jws@glasgow.ac.uk

Further information: If you are interested or want more information, please contact me at ankush.aggarwal@glasgow.ac.uk before starting the formal application. Please visit Computational Biomechanics Research Group page for more information on our research.

PhD in health and technology @University of Bologna

Are you looking for a PhD in health and technology?  What about getting one from the oldest university in the world?

The PhD programme in Health and Technologies of the Alma Mater Studiorum – University of Bologna is a new, interdisciplinary PhD course that offers the opportunity to conduct three-year research projects on developing, applying, and validating innovative technologies in biomedical research and healthcare.

The academic board of the PhD school includes experts in bioengineering, biomaterials science, medical physics, computer science, medicine, biology, psychology, and law.  Each project targets applicants with either a degree in biomedical sciences or technical disciplines or both.  Regardless, each project is supervised by two supervisors, one active in the biomedical field, one in the technology field.

This year the deadline for applications is May 21st, 2021, and we have a number of scholarships higher than usual. 

To submit your application here: https://www.unibo.it/en/teaching/phd/2020-2021/health-and-technologies. For more information you can contact: claudio.borghi@unibo.it.

PhD position on Computer mechanobiology of mandibular reconstruction @Charité

A PhD position is available within the Computational Mechanobiology Group (Prof. Sara Checa) at the Julius Wolff Institute (Charité – Universitätsmedizin Berlin). This position is funded through a research grant from the German Research Foundation (DFG) to investigate the biomechanics of mandibular reconstruction with fibular free flap. The aim is to use computer modeling approaches supported by clinical data to understand the mechanical conditions promoting mandibular repair.


The successful candidate will have a strong background in one or more of the following areas: mechanics, computational biology and/or computational mechanics. Strong programming and computer modelling skills are required. The position is available for three years.


The work will be conducted in an interdisciplinary research environment composed of engineers, biologists and clinicians. As a PhD student, you will be associated to the Berlin-Brandenburg School of Regenerative Therapies (www.bsrt.de) and benefit from the interaction with international scientists.

Interested candidates should submit their curriculum vitae by 1st June, 2021. Applications should be sent to: Prof. Sara Checa (sara.checa@charite.de)

PhD Position in Experimental Micro- and Nanobiomechanics @TUWien

We invite applications for a of a PhD position (University Assistant) in experimental micro- and nanobiomechanics. The position is set within a vibrant research group with a main focus on mechanics of individual collagen fibrils and micromechanics of collagen-rich tissues. The research project to be addressed is two-fold:

1) Conducting scientific research on the mechanics of individual collagen-fibrils as well as micro-mechanics of tissue sections as a function of age, pathology or chemical modification. We have a number of ongoing research projects in this context such that this part will be shaped according to the interests of the applicant.

2) Further development of experimental testing devices for micro- and nanomechanical characterization of individual collagen fibrils and microscopic tissue samples. This is based on a mechanical testing device for nanoscale fibres developed by our team.

Further information and link to apply for this position (deadline April 22nd 2021): https://jobs.tuwien.ac.at/Job/148900

For informal discussion please contact Philipp Thurner (Philipp.thurner@tuwien.ac.at)

PhD position on the characterization of anticipatory neuromuscular coordination during explosive movements @ University of Poitiers, France

We invite applications for a PhD position at University of Poitiers, France, entitled “Characterization of anticipatory neuromuscular coordination during explosive movements“.

Summary: The objective of this PhD thesis is to characterize anticipatory muscular coordination during iexplosive movements performed by trained female and male athletes. The Ph.D. student will conceive experimental protocols where human participants have to perform explosive dynamic movements. Data will be collected using both human motion analysis (infrared cameras & force sensors) and muscular physiology (electromyography & superfast ultrasound echograph) equipment. Anticipatory neuromuscular coordination recorded during explosive movements will then be analysed using multi-scale and multi-physic models. Joint torques and muscular lengths and activation patterns will be estimated from a personalised musculoskeletal model. Data collected with echographs will help refine the characterization of interactions between muscular and tendinous fibers.

Keywords: Human movement, Biomechanics, Neuromuscular coordination, Motion Analysis, Musculoskeletal Modelling, Experimental studies, Sport.

Supervisors: Dr. Floren COLLOUD & Dr Romain TISSERAND

Calendar:

Applications must be sent by email before April, 20th 2021.

Interview: from May 17th to May 21st 2021.

Project and funding will start October 1st 2021.

Further information: https://www.u-ldevinci.fr/simme/en/2021/03/04/characterisation-of-anticipatory-neuromuscular-coordination-during-explosive-movements/

For informal discussion please contact Floren Colloud (floren.colloud@univ-poitiers.fr)

PhD Position in Experimental Micro- and Nanobiomechanics

We invite applications for a of a PhD position (University Assistant) in experimental micro- and nanobiomechanics. The position is set within a vibrant research group with a main focus on mechanics of individual collagen fibrils and micromechanics of collagen-rich tissues. The research project to be addressed is two-fold:

1) Further development of experimental testing devices for micro- and nanomechanical characterization of individual collagen fibrils and microscopic tissue samples. This is based on a unique mechanical testing device for nanoscale fibres.

2) Conducting scientific research on the mechanics of individual collagen-fibrils as well as micro-mechanics of tissue sections as a function of age, pathology or chemical modification. We have a number of ongoing research projects in this context such that this part will be shaped according to the interests of the applicant.

Further information and link to apply for this position (deadline March 4th 2021): https://jobs.tuwien.ac.at/Job/145238

For informal discussion please contact Philipp Thurner (Philipp.thurner@tuwien.ac.at)

Four PhD Positions at ETH Zurich: MSCA ITN “BioTrib”

Four collaborative PhD positions are available at the Institute for Biomechanics (Department of Health Sciences and Technology). The Institute for Biomechanics is a multidisciplinary research unit dedicated to the biomechanical investigation of the human body. We investigate the mechanics and material properties of the musculoskeletal system, as well as movement control, from a macroscopic (body/organ) scale to a microscopic (cell) scale.

Project background

The available position is funded under the EU MSCA Innovative Training Network program “BioTrib”. The overall aims of the research program are to develop advances in the performance of natural and artificial joints. The program’s focus is on biotribology, which includes friction, lubrication and wear in these interventions. The researchers will gain the necessary interdisciplinary skills demanded by industry to deliver timely and cost-effective solutions to some of the most intractable European healthcare problems in arthritis.

Job description

The focus of each research sub-project is outlined in the job advertisement on the central ETH Zurich website listed below:

PhD Position: Design of a Self-Lubricating Prosthesis

https://jobs.ethz.ch/job/view/JOPG_ethz_mSUhxGFtq3OxYXYBoq

PhD Position: Boundary Lubrication of Fibrous Scaffolds

https://jobs.ethz.ch/job/view/JOPG_ethz_ZLaGSe9E6PBvQAY5q8

PhD Position: Tribological Characteristics of Nanofibrous Electrospun Materials

https://jobs.ethz.ch/job/view/JOPG_ethz_3H36CzKCMLpSTlxx7Q

PhD Position: Elucidation of Friction-Induced Failure Mechanisms in Fibrous Collagenous Tissues

https://jobs.ethz.ch/job/view/JOPG_ethz_Pbfuiq745SbJSXvWw8

Your profile

You are required to have a master’s degree in a relevant field. Specific requirements for each position are given in the individual job advertisements linked above.

Eligibility is set by the regulations of the MSCA ITN framework. Researchers can be of any nationality. They are required to undertake physical, transnational mobility (i.e. move from one country to another) when taking up their appointment. Therefore, researchers must not have resided or carried out their main activity (work, studies, etc.) in Switzerland for more than 12 months in the 3 years immediately before the recruitment date. The first positions are available from August 2021.

ETH Zurich

ETH Zurich is one of the world’s leading universities specialising in science and technology. We are renowned for our excellent education, cutting-edge fundamental research and direct transfer of new knowledge into society. Over 30,000 people from more than 120 countries find our university to be a place that promotes independent thinking and an environment that inspires excellence. Located in the heart of Europe, yet forging connections all over the world, we work together to develop solutions for the global challenges of today and tomorrow.

Interested?

We look forward to receiving your online application with the following documents:

  • Covering letter with statement of motivation
  • CV
  • Copy of bachelor and master transcripts
  • Copy of MSc thesis

Please note that we exclusively accept applications submitted through our online ETH Zurich application portal linked above. Applications via email or postal services will not be considered. Application deadline is 28.02.2021.

Further information about the Institute for Biomechanics can be found on our website www.biomech.ethz.ch. Questions regarding the position should be directed to Prof. Stephen Ferguson, email sferguson@ethz.ch (no applications).

PhD position on crumbling reefs: simulation based monitoring of coral reefs @Heriot-Watt University

The project aims to develop computational models to analyse the impact of ocean acidification on cold-water coral reefs. Our vision is to facilitate rapid monitoring strategies that can help to preserve some of the most vulnerable ecosystems. To realise this, we aim to develop fast and effective multiscale in silico models from coral skeleton to reef length scale to predict the ocean acidification induced decay of cold-water coral reef systems. A major challenge is the ability to such complex systems, and we aim to overcome this by combining the power of multiscale models based on physical knowledge with the speed of artificial neural networks.

More information can be found here:

https://www.findaphd.com/phds/project/eps2021-27-crumbling-reefs-simulation-based-monitoring-of-coral-reefs/?p128407

PhD position on fast and effective personalised multiscale modelling for precision medicine in musculoskeletal diseases @Heriot-Watt University

Motivated by the pressing need for treatment optimisation in musculoskeletal diseases, our vision is to create a clinical point-of-care test that uses X-rays to visualise mechanical analyses of long bones such as the femur to illustrate potential therapeutic success in a couple of minutes, without adding significant time to patient consultations or training needs for clinicians. To realise this, we aim to develop fast and effective patient-specific in silico models to predict the multiscale mechanical behaviour of long bones. These combine the power of multiscale models based on physical knowledge with the speed of artificial neural networks.

More information can be found here:

https://www.findaphd.com/phds/project/eps2021-28-fast-and-effective-personalised-multiscale-modelling-for-precision-medicine-in-musculoskeletal-diseases/?p128413

PhD Student Position in Biomedical Development @ AO Research Davos

The AO is a medically guided, not-for-profit organization led by an international group of surgeons specialized in the treatment of trauma and disorders of the musculoskeletal system. Founded in 1958 by 13 visionary surgeons, the AO fosters one of the most extensive networks of over 215,000 surgeons, operating room personnel, and scientists in over 100 countries.

The mission of the AO Research Institute Davos (ARI) is excellence in applied Preclinical Research and Development within trauma and disorders of the musculoskeletal system and translation of this knowledge to achieve more effective patient care worldwide. The ARI contributes high quality applied Preclinical Research and Development (exploratory and translational) focused towards clinical applications/solutions as well as investigates and improves the performance of surgical procedures, devices and substances. It fosters a close relationship with the AO medical community, academic societies, and universities and provides a research environment and support for AO clinicians.

PhD Student Biomechanics and Modeling Focus Area

Peri-implantitis remains an unsolved issue, affecting close to half of all dental implants, with heavy smokers, patients with systemic health conditions (e.g. uncontrolled diabetes) and the immunosuppressed to be more vulnerable to the disease. The currently used dental implants are of low functionality and prone to bacterial colonization and to the formation of bacterial biofilm. The international and interdisciplinary consortium of the Horizon 2020 funded I-SMarD project aims to address this issue by developing advanced multifunctional dental implants that prevent bacterial colonization, promote tissue in-growth and integration via custom 3D printed structure, and allow non-invasive monitoring of the healing process using special coatings. The novel implants are expected to reduce the required time and cost of rehabilitation period for patients benefit while improving diagnosis.

Within this context, we are looking for an outstanding PhD student to join our team. The PhD candidate’s activities will be focused on the structural design and mechanical behavior of the implant using a combined biomechanical testing and computer simulation approach. The successful candidate will be hired at ARI and enrolled at in the PhD program of a partner university in Europe.

Your profile

  • MSc degree in biomedical engineering, mechanical or civil engineering, technical physics, material sciences or related disciplines
  • Previous experience with mechanical testing and finite element simulations would be an advantage
  • Excellent communication (English) skills for an effective collaboration with all involved parties.
  • High motivation, strong interest in research, durability to cope with challenges
  • Ability to solve complex tasks in a highly independent manner
  • Eligibility to apply and obtain a Visa for temporary residence is Switzerland
  • Familiarity with a cross-cultural/interdisciplinary environment is an advantage

We offer

  • An interesting and varied job in an exciting and innovative organization
  • Working in a highly committed international team
  • Modern infrastructure
  • Employment conditions which match the requirements and offer a high degree of flexibility re working hours and location

If you meet the requirements of this challenging opportunity, please submit your complete online application (motivation letter, CV, recent photograph, certificates, reference letters, etc.) through our online application system. Applications received via other channels will not be considered in the process.

For more information please contact Dr. Peter Varga peter.varga@aofoundation.org

The online application link can be found here.


Corporate members of the ESB:

AMTI force and motion logo
BERTEC logo
Beta CAE logo
BoB Biomechanics logo
Materialise logo
Nobel Biocare logo
SHL Medical logo