COMPARISON OF PREDICTED SPINE LOADS BY FOUR LIFTING ANALYSIS TOOLS AND A REGRESSION MODEL

N. Arjmand¹, M.A. Rajaee¹, A. Shirazi-Adl², A. Plamondon³, M. Parnianpour¹

¹ School of Mechanical Engineering, Sharif University of Technology, Iran; ² École Polytechnique, Montréal, Canada; ³ Robert Sauvé Research Institute, Canada

Introduction

Estimates of loads on spine during occupational tasks remain as elusive as ever despite need for the design of safer workplace and injury prevention programs. Several quantitative lifting analysis tools for spine loads are currently available in ergonomics though evaluation and comparison of their estimations is missing. We aim hence to compare predictions of five tools when applied to identical lifting tasks. Beside critical assessment of their respective underlying assumptions, this should help provide muchneeded guidance to ergonomists.

Method

Five tools (3DSSPP[®], AnyBody[®], HCBCF of the University of Utah [Merryweather, 2009], EMG-based McGill's polynomial [McGill, 1996], and our regression models based on an anatomically detailed multi-joint finite element model [Arjmand, 2012]) are used to simulate seven tasks for which in vivo intradiscal pressure (IDP) data are available: 1) relax upright posture, 2-3) lifting 19.8 kg once at 30 cm and then 60 cm anterior to the L5-S1 in upright posture, 4) flexing forward by 50°, 5) flexing forward by 70° while holding 19.8 kg, 6) flexing forward by 110°, and 7) asymmetric one-handed lift of 19.8 kg on the left side in the upright posture. Body weight of 70 kg and height of 174 cm similar to the subject in the IDP measurements [Wilke, 2001] are assumed.

Results

Predicted spine loads (N) by different tools are in Table 1. Comparison of predicted L4-L5 IDP values with *in vivo* data is in Figure 1.

Discussion

Excluding the regression models, all tools use equilibrium at one single joint and neglect translational DOFs and their corresponding equilibrium equations. Utah's and L5-S1 3DSSPP models include only one extensor muscle and ignore passive spine resistance. L4-L5 3DSSPP model has also limited number of muscles. 3DSSPP predicted for the asymmetric task the extreme compression loads being the lowest at the L5-S1 level (413 N) while largest at the L4-L5 (2180 N). McGill's model predicted the greatest L4-L5 compression for the lightest task (task 1, 1064 N). Differences between the tools reached ~40% and 35% for L4-L5 and L5-S1 compression, respectively. Regression models estimated relatively higher L5-S1 shear. Utah's tool only model symmetric tasks. AnyBody[®] failed to model deep flexion tasks. McGill' and Utah's models do not provide shear forces.

		Regr	essio	n Me	odels	Regression Models McGill Utah	Utah	,	AnyBody®	ody	8		3DSSPP®	SPP	@
Task	Task	L5.	L5-S1	L4	L4-L5	L4-L5 L5-S1	L5-S1	LS	L5-S1	L4	L4-L5	Γ	L5-S1	L4	L4-L5
		S	С	S	С	С	С	S	С	S	С	S	C	S	С
-	1	139	420	13	396	1064	494	50	440	33	391 220	220	365	139	302
	2	705	705 1178 242 1327	242	1327	1235	1494 242 1411 127 1317 347 1393 208 1299	242	1411	127	1317	347	1393	208	129
	3	1426	3 1426 2405 555 2617	555	2617	2058	2339 454 2353 248 2241 342 2382 147 2285	454	2353	248	2241	342	2382	147	228:
4	4	524	524 1743 135 1711	135	1711	1380	1992 327 1681 183 1569 291 1824 263 1665	327	1681	183	1569	291	1824	263	166:
41	2	1035	1035 3517 357 3307	357	3307	2763	3630 713 3373 395 3208 512 3070 525 2767	713	3373	395	3208	512	3070	525	276
	9	460	460 1963 153 1875	153	1875	1622	I	-	,	1	ı	329	329 1554 324 1340	324	134(
	7	677	7 677 1588 145 1628	145	1628	1410	ı	192	1820	120	192 1820 120 1645 342 444 357 2217	342	444	357	221′

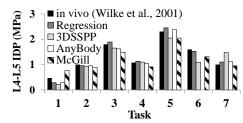


Figure 1: Predicted versus in vivo IDP data.

References

Arjmand et al., Clin Biomech, 27:53-44, 2012. McGill et al., Ergonomics, 39:1107-18, 1996. Merryweather et al., Work, 34:263-72, 2009. Wilke et al., Clin Biomech, 16:S111-26, 2001.