Job opening for Ph.D. student at the Institute of Orthopaedic Research and Biomechanics, Ulm University

The joint biomechanics group of the Institute of Orthopaedic Research and Biomechanics at the Ulm University Medical Centre invites applications for a
PhD student position (3 years – 60% E13 TVL) within the DFG funded project; Functional biomechanics of the healthy and degenerative meniscus;
Start date: as soon as possible.
The aim of the project is to determine the biomechanical properties of the degenerative meniscus in vivo using imaging methods (MRI). Existing in vitro methods (Freutel 2014) have to be adapted to the in vivo setting with patients. The applicant will perform experimental studies in vitro and in vivo and to a considerable extent in silico analyses.
The applicant should
– have a Master Degree in Mechanical or Biomedical Engineering, Computer Science or equivalent.
– have experience in Matlab, Finite Element Analysis (ANSYS or ABAQUS) and in using segmentation tools.  Nice to have: experience in imaging techniques.
– be an excellent team worker with above-average communication skills
– speak English very well. We expect foreigners to learn German once they have started the job.
– be autonomously working and highly motivated.
We offer
– top level research possibilities.
– excellent supervision.
– a motivated and collegial team.
The University aims to increase the number of female employees and particularly asks qualified female candidates to apply. Disabled and handicapped female applicants are preferred when equally qualified. The recruitment is made by the administration of Ulm University Medical Centre on behalf of the Federal State of Baden-Wuerttemberg.
Applications are welcome by email. Please send one single PDF including all documents.
Prof. Dr. Lutz Dürselen
Institut für Unfallchirurgische Forschung und Biomechanik
Zentrum für Traumaforschung Ulm ZTF
Universitätsklinikum Ulm
Helmholtzstrasse 14
89081 Ulm
Phone: +49 731 500-55333
E-Mail: lutz.duerselen(at)uni-ulm.de

PhD student position in Biomedical Engineering @ Lund University, Sweden

Doctoral student in Biomedical Engineering

Lund University, Faculty of Engineering, LTH, Biomedical Engineering

Lund University was founded in 1666 and is regularly ranked as one of the world’s top 100 higher education institutions. The University has 41 000 students and 7 500 staff based in Lund, Helsingborg and Malmö. We are united in our efforts to understand, explain and improve our world and the human condition.

LTH forms the Faculty of Engineering at Lund University, with approximately 9 000 students. The research carried out at LTH is of a high international standard and we are continuously developing our teaching methods and adapting our courses to current needs.

Project description

Can neutron scattering elucidate mechanisms behind bone damage?

Bone, with an inorganic strong and stiff mineral (hydroxyapatie) and a more flexible organic matrix (collagen type I), is a hierarchical tissue with unique material properties. During aging, many conditions occur which are treated with metal implants. E.g. joint replacements has generally evolved to be a success. However, patients still experience implant loosening due to insufficient bone in-growth, or local bone damage and failure close to the implant. Thus, improved bone ingrowth onto metal implants is still needed.

Without doubt, X-ray based imaging modalities are state-of-the-art for investigating bone both in daily clinical practice and in high end research. However, when metal implants are involved, the high density contrast between metal and bone often results in significant artifacts in the close proximity of the implant, i.e. in the most important region for evaluation bone-implant in-growth. Moreover, we have shown that bone fragility may be highly linked to changes in the collagen matrix, something that is not well captured with X-rays. The absorption profile of neutrons is however very different. Neutrons are more strongly attenuated by hydrogen and organic material than e.g. metals, but their potential in bone research has not yet been explored.

The objectives are to understand bone damage and fracture mechanisms on various hierarchical levels and with focus on bone ingrowth on implants, the goal of this project is to explore the potential of neutron tomographic imaging and small angle scattering in studies of bone.

The project includes designing and carry out experiments at large scale facilities, followed by data analysis. The imaging part involves using Digital Image Correlation to follow the deformation of the tissue during loading, and to link the different length scales of the tissue to each other. The project will develops the use of neutron based methods on bone. As such it will open up the field of neutrons to a large potential user group interested in musculoskeletal and medical materials.

SwedNESS: The project is a part of SweNESS, the newly initiated national graduate school for Neutron research. Please see link for more information http://swedness.se/

Work duties

The main duties of doctoral students are to devote themselves to their research studies which includes participating in research projects and third cycle courses. The work duties can also include teaching and other departmental duties (no more than 20%).

Detailed description of the work duties, such as:

  • The research involves both experimental design and testing, tomographic and scattering imaging and analysis of data, including the use of digital image correlation.
  • The doctoral student is expected to assist in supervision of MSc degree projects
  • The project is a collaboration with Solid mechanics and Physical Chemistry at LU, and the doctoral student is expected to actively manage this collaboration.
  • The doctoral student is expected to take part in the activities arranged by SweNESS graduate school.

Admission requirements

A person meets the general admission requirements for third-cycle courses and study programmes if he or she:

  • has been awarded a second-cycle qualification, or
  • has satisfied the requirements for courses comprising at least 240 credits of which at least 60 credits

were awarded in the second cycle, or

  • has acquired substantially equivalent knowledge in some other way in Sweden or abroad.
  • A person meets the specific admission requirements for third cycle studies in Biomedical Engineeringif he or she has at least 45 second-cycle credits of relevance to the subject.

Additional requirements:

  • Very good oral and written proficiency in English.
  • The candidate should have a background in (bio)engineering/ physics/chemistry or imaging.
  • Experience with Neutron or Synchrotron based data collection or analysis is considered important
  • Experience with tomographic imaging or small angle scattering is considered important.
  • Experience with full-field strain measurement techniques is considered positive.

Assessment criteria

Selection for third-cycle studies is based on the student’s potential to profit from such studies. The assessment of potential is made primarily on the basis of academic results from the first and second cycle. Special attention is paid to the following:

  • Knowledge and skills relevant to the thesis project and the subject of study.
  • An assessment of ability to work independently and to formulate and tackle research problems.
  • Written and oral communication skills.
  • Other experience relevant to the third-cycle studies, e.g. professional experience. Other assessment criteria:
  • The candidate should be able to independently drive his/her own research project, as well as writing scientific publications.
  • The candidate should be able to supervise younger researchers.
  • Experience with multidisciplinary projects is important.
  • International experience is considered positive.

Consideration will also be given to good collaborative skills, drive and independence, and how the applicant, through his or her experience and skills, is deemed to have the abilities necessary for successfully completing the third cycle programme.

Conditions

Only those admitted to third cycle studies may be appointed to a doctoral studentship. Third cycle studies at LTH consist of full-time studies for 4 years. A doctoral studentship is a fixed-term employment of        a maximum of 5 years (including 20% departmental duties). Doctoral studentships are regulated in the Higher Education Ordinance (1998:80).

Instructions on how to apply

Applications shall be written in English and include a cover letter stating the reasons why you are interested in the position and in what way the research project corresponds to your interests and educational background. The application must also contain a CV, degree certificate or equivalent, and other documents you wish to be considered (grade transcripts, contact information for your references, letters of recommendation, etc.).

Lund University welcomes applicants with diverse backgrounds and experiences. We regard gender equality and diversity as a strength and an asset.

Type of employment                              Temporary position longer than 6 months

First day of employment                       As per argreement. Initially 1 year and thereafter extended

Salary                                                     Monthly salary

Number of positions                             1

Working hours                                      100 %

City                                                         Lund

County                                                   Skåne län

Country                                                  Sweden

Reference number                                 PA2016/4605

Contact                                                   Hanna Isaksson +46462221749 Johan Nilsson +46462227532

Published                                               2016-12-19

Last application date                            2017-01-31

Link to ad                                                http://lu.mynetworkglobal.com/what:job/jobID:127473/

Assistant / Associate / Full Professor of Biomedical Engineering @ Heriot Watt University, Edinburgh

Assistant Professor / Associate Professor / Professor of Biomedical Engineering

Date posted: 

Details

About our team

The School of Engineering and Physical Sciences has an international research reputation and close connections to the professional and industrial world of science, engineering and technology.  Our research ranges from fundamental chemical, physical and biological sciences through to engineering, with applications in biology, medicine, energy, photonics, chemical and biochemical processes, and manufacturing amongst others, all of which are supported by strong external funding.  We have around 120 full-time academic staff driving this research activity, based in 5 research institutes:  Institute of Mechanical, Process & Energy Engineering; Institute of Chemical Sciences; Institute of Photonics & Quantum Sciences; Institute of Sensors, Signals & Systems; and the Institute of Biological Chemistry, BioPhysics & BioEngineering.  Together with the University of Edinburgh we represent the “most powerful” General Engineering unit in the UK, as measured by the recent REF.

In addition we deliver teaching across 5 first degree programmes: Chemistry; Physics; Electrical, Electronic & Computer Engineering; Chemical Engineering; and Mechanical Engineering. Heriot-Watt is in the UK’s Top 20 and second in Scotland in the 2016 Guardian League Tables with five subjects in the top 5 and ten subjects in the top twenty. We pride ourselves on the student experience we offer and were ranked UK University of the Year for Student Experience 2012/13 in the Sunday Times University Guide, as well as Scottish University of the Year 2012/13 and 2011/2012.  In the 2014 National Student Survey, Heriot-Watt University was ranked 1st in the UK for Chemical Engineering (for the fifth year running) and Electrical Engineering, receiving 100% student satisfaction rating. The following of our subjects ranked in the top ten within the UK: Chemical Engineering; Chemistry; Electrical Engineering; and Mechanical Engineering.

Building on the outstanding REF2014 results in Engineering and unsurpassed NSS outcomes in our engineering disciplines, Heriot-Watt University is looking to grow and complement its existing research capacity within its Institute of Mechanical, Process and Energy Engineering (IMPEE). We are now looking to recruit our future academic leaders across a range of our portfolio; this post relates to Biomedical Engineering.

The Institute of Mechanical, Process & Energy Engineering (IMPEE) is a dynamic, multidisciplinary research Institute focused on promoting excellence across our four main research themes: Energy Harvesting and Conversion; Biomedical Engineering; Computational and Digital Engineering; and Multiphase Flow. The mission of this vibrant Institute with around 30 academic staff is to foster research excellence across its main research themes. Much of our work involves strong industrial links across a range of sectors and, through our expertise, skills and experience we work together with industry to identify new areas of interest.  The REF2014 results for Heriot-Watt University were truly excellent.  Relevant to this post is our joint submission with University of Edinburgh in General Engineering that ranks first in the UK for research power and we are seeking individuals who can make a complementary contribution to one of our themes and who have the potential to grow into a position of research leadership.

 

Further details

The Biomedical Engineering theme focuses on highly interdisciplinary and cutting-edge research at the interface between mechanical engineering, material science and bioengineering. We bring together our expertise in micromechanics, tissue engineering, laser tissue interaction, novel optical fibres, computational mechanics, micro/nano manufacturing, thermo-fluid mechanics, and digital design and manufacture to address the challenges in biomedical engineering including cancer diagnostics and therapy, minimally invasive procedures, tissue mechanics, patient-specific modelling, tissue engineering and characterisation.  Applications are welcome from individuals whose core disciplines are in the areas of mechanical engineering, chemical engineering, electrical engineering or are in other relevant engineering domains or applied sciences and can complement our existing strengths

Key duties and responsibilities

  • actively engaging in research and contributing to the University’s research profile;
  • actively pursuing research funding through the submission of high-quality grant proposals;
  • establishing collaborative research and teaching links outside the university via funding councils, industry, business and public bodies;
  • Publicising research through the preparation and submission of journal and conference papers and participating in academic conferences;
  • representing the institution in a professional capacity, particularly with regard to research dissemination and development e.g. conferences, meetings, with industrial partners, etc.;
  • supervising and mentoring undergraduate students, postgraduate students and research associates;
  • teaching through the delivery of lectures, tutorials and laboratories, assessing the relevant students’ work as well as setting and marking examinations and coursework;
  • designing and developing teaching materials and new teaching methods, using personal research to inform teaching where appropriate;
  • Education, Qualifications and Experience

    • Minimum qualification: Doctorate

    Candidates will be expected to have a strong track record of research in one or more of the following areas:

    • microfabrication or testing with relevance to biological systems;
    • biological process engineering, including process control using mechanical, electrochemical or biochemical sensors and actuators;
    • design/fabrication of hybrid biological/physical structures and devices.

    The successful candidate will have some experience in making grant applications (commensurate with level of appointment), authoring high-quality publications and forming a research team. We also need individuals who can make a positive contribution in innovative teaching in our core areas or mechanical engineering and chemical engineering.

    How to apply

    Applications for this vacancy should be made online through the Heriot-Watt University iRecruit system.

    Applications can be submitted up to midnight (UK time) on 11th December

    When applying for this role please include in the cv your publications list, teaching experience, grants obtained and contact details for at least two referees.

    Informal  enquiries regarding this position can be directed to Prof. Bob Reuben R.Reuben@hw.ac.uk

    Appointments will be made according to experience, bands are; Professor from 57,674, Associate Professor 48,327 – 55,998 Assistant Professor 39,324 – 46,924.

    Consideration will be given to applications on a part-time and/or job-share basis.

    Use our total rewards calculator to see the value of benefits provided by Heriot-Watt University.

    Two PhD student positions in musculoskeletal biomechanics and imaging in Finland

    Type of employment: PhD student, 4 years (2-4 positions, fully funded)

    Host institution: University of Eastern Finland and/or University of Oulu

    Funding: Biomedical Engineering and Medical Physics doctoral program, funded partly by the European Union and Marie Skłodowska-Curie actions and partly by the University.

    Any eligible candidates (please see call for the doctoral program, http://www.uef.fi/en/web/biomep) are encouraged to contact Drs. Korhonen or Saarakkala below, with CV, for more information (before submitting an application).

    Ultimate goal of the project 

     Investigate adaptation of knee joint tissues (articular cartilage, subchondral bone, menisci, ligaments) to abnormal loading and during the progression of osteoarthritis, develop and validate models of bone and cartilage adaptation to loading, and apply models in patient-specific knee joint geometries for the evaluation of the progression of osteoarthritis and for the investigation of the effects of treatments and operations.

    Implementation 

    Mechanical properties and structure of subchondral bone, cartilage, menisci and ligaments are determined and implemented in the biomechanical model of the knee joint. The model is validated against extensive experimental data, e.g. motion analysis and clinical imaging. The model with algorithms for cartilage and bone adaptation to loading will be validated against experimental data of the altered cartilage and bone properties and/or osteoarthritis grade (in vitro, in situ, humans in vivo). The effect of different tissue injuries (e.g ligament rupture, bone microcracks), treatments and operations (e.g. weight loss, ACL reconstruction) on osteoarthritis progression will be evaluated in animal models and patients.

    PhD student position #1, experimental (University of Eastern Finland and/or University of Oulu) 

    Conduct in vitro and/or in vivo experiments to follow up the progression of post-traumatic and spontaneous osteoarthritis. Determine time- and loading force-dependent mechanical properties and structure/composition of articular cartilage, bone, ligaments and menisci from normal (healthy) knees and osteoarthritic knees using mechanical testing, microscopy, spectroscopy and biochemical analysis. One of the aims is to investigate osteoarthritic changes at the cartilage-bone interface, including microcracks in calcified cartilage and subchondral bone. Mechanical data of soft tissues is analyzed using fibril reinforced poroviscoelastic modeling and structure-function relationships are determined. For in vivo studies, clinical imaging and motion analysis data of patients is collected and analyzed. This data is later used for model validation and input.

    PhD student position #2, computational (University of Eastern Finland) 

    Evaluate the importance of realistic bone and soft tissue properties in the models of knee joints on cartilage and chondrocyte responses. Combine musculoskeletal and finite element models, and develop and validate computational models of the knee joint with adaptive properties of articular cartilage and bone. Predict the effect of abnormal loading, as well as cartilage lesions and bone microcracks, on altered cartilage and bone properties during the progression of osteoarthritis. Aforementioned experimental data (in vitro experiments, animal models, patients) is used for model validation.

    Requirements 

    We are looking for highly motivated candidates with the background in one or several of the following or related disciplines; biomedical engineering, biomechanics, medical physics, mechanical engineering, or related field. For the PhD student position #2, good modeling skills and experience in the use of Abaqus or FEBio and user materials are advantages. All studies will be conducted in close collaboration with the groups’ post-doc fellows and other collaborators. Therefore, good collaborative attitude is needed in both positions.

    Specific requirements by the European Union (http://www.uef.fi/en/web/biomep/eligibility-requirements

    The successful candidates should be eligible to be admitted to the doctoral program and has the following qualifications:

     MSc degree (or close to graduating) in biomedical engineering, medical physics, mechanical engineering, or other relevant field. Less than 4 years of research experience, as measured from the date of the MSc degree.

     The mobility rule of the EU funded doctoral program require that a PhD student cannot have resided for more than 12 months over the past 3 years in the country where he/she applies to.

    Collaboration 

    The research projects include both national and international collaboration and mobility with several internationally recognized research groups in their own field.

    Primary supervisors 

    Professor Rami Korhonen (rami.korhonen@uef.fi, http://luotain.uef.fi/?n=group&g=rami_korhonen).

    Associate Professor Simo Saarakkala (simo.saarakkala@oulu.fi, http://www.mipt-oulu.fi/simo_saarakkala)

    15 PhD candidate positions in Biomedical Engineering and Medical Physics

    15 PhD candidate positions in Biomedical Engineering and Medical Physics – Marie Skłodowska-Curie – COFUND: Kuopio Finland (coordination), Lund SE, Chieti-Pescara IT, Zaragoza ES, Oulu FI, Helsinki FI, Tampere FI, Turku FI 

    Applications are invited for 15 PhD candidate positions under EU Horizon 2020 Marie Skłodowska-Curie COFUND Action – BioMEP doctoral programme – which offers unique inter/multidisciplinary research and training opportunities for young scientists in Biomedical Engineering and Medical Physics across Europe.

    This doctoral programme brings together complementary expertise of 8 leading European research groups in the field of Biomedical Engineering and Medical Physics and major private industrial companies and university hospitals. BioMEP aims to fulfill the demand for highly-qualified biomedical engineers and medical physicists addressing the needs of the academic, healthcare and industry sector, and thus to fully prepare them to meet the increasing demands of the European labor market. Together with the University of Eastern Finland (Finland), the following universities are participating in the project: Lund University (Sweden), University of Oulu (Finland), Aalto University (Finland), Tampere University of Technology (Finland), University of Turku (Finland), Gabriele d’Annunzio University of Chieti-Pescara (Italy) and Zaragoza University (Spain).

    The BioMEP training and research activities are characterized by a multidisciplinary approach and allow candidates to submit proposals under the following five focus research areas:

    o Musculoskeletal biomechanics 

    o Molecular, cell and tissue engineering 

    o Biosignals 

    o Multimodal neuroimaging 

    o Biomedical devices and diagnostics 

    We offer: 

    Successful candidates are appointed on a full-time basis for a total of 4 years while working towards a PhD in biomedical engineering and/or medical physics. All successful candidates will be offered a local employment contract, compatible with national and regional legislation and will include competitive salary to cover living plus mobility costs and social and healthcare benefits (according to each host university salary system).

    Successful PhD candidates will have:

    • access to a well-developed research infrastructure and international networks including academic-industry links to major health technology companies and hospitals;

    • the opportunity to define and follow a Personal Career Development Plan and

    • to access a variety of training activities and workshops in the field of biomedical engineering and medical physics;

    • the opportunity for research visits within the BioMEP’s partners (up to three months);

    • the opportunity to participate in joint research and be enrolled in dual or joint degrees;

    Eligibility criteria, application and selection process:

    We search for highly motivated candidates to work in an inspiring multidisciplinary field that combines engineering, medicine, biology and physics. We also strongly encourage applications from female candidates. The candidates should have a strong background in biomedical/biomechanical engineering, medical physics, biophysics or related educational field.

    Candidates will be required to meet Marie Curie Early Stage Researcher eligibility criteria:

    • at the time of recruitment, applicants may not have resided or carried out their main activity (work, studies, etc) in the country of the host institution for more than 12 months in the 3 year period immediately prior to their recruitment under the project. Compulsory national service and/or short stays such as holidays are not taken into account.

    • Applicants should be in the first 4 years of their research careers and not yet have been awarded a doctorate. This 4 year period is measured from the date of obtaining the degree which would formally entitle to embark on a doctorate.

    How to apply:

    Application shall be prepared jointly by the candidate and the prospective supervisor from one of the host institutions and should contain the following appendices saved as a pdf in the following order: 

    1. Application form, including two references; 

    2. Motivation letter (max. 1 page); 

    3. A detailed Curriculum Vitae http://europass.cedefop.europa.eu/documents/curriculum-vitae

    4. Research proposal (max. 2 pages), including a section on research environment, ethical issues + supervision agreement; 

    5. Certified (translated) copy of Master’s (or higher) degree certificate and certified (translated) transcript of records of Master’s (or higher) degree studies; 

    Complete applications will be evaluated by an independent Advisory board based on three selection criteria. Applicants should therefore be outstanding in all three selection criteria: the

    excellence of the applicant (academic excellence, previous mobility), quality of the research environment and the scientific quality of the research proposal. Based on the evaluation scores, the candidates will be ranked in a priority list and top candidates will then be invited for a Skype interview. Attention will be paid to the ability of candidates to present their research project, their motivation, communication skills and English fluency. All candidates will be advised of the outcome of the selection process after the selection.

    The starting date for the PhD candidate is flexible. It is expected that the PhD candidates will start at their earliest convenience, within 3 months of formal acceptance. The exact starting date for each doctoral candidate will be negotiated on individual basis between the candidate and the host institution.

    Important dates Launch of the call for applications 03/10/2016
    Deadline for the submissions 30/11/2016 
    Results of the evaluation 31/12/2016
    Expected interview dates 01/2017
    Final results 02/2017
    Expected start date 06/2017-09/2017

    More information on the application and evaluation procedure for the BioMEP doctoral positions is available on the BioMEP homepage: http://www.uef.fi/web/biomep/how-to-apply

    The deadline for sending the application is November 30, 2016, at 16:00 CET. 

    Further enquiries:

    For further information on the research and supervision, please contact the supervisors listed under the research areas: http://www.uef.fi/web/biomep/research-areas1

    For further information on the application procedure, please contact: siru.kaartinen@uef.fi

    Two PhD candidate vacancies in computational biomechanics at Lund University

    We are looking for two PhD students to Biomechanics at Lund University that would like to apply to the new graduate school for Biomedical Engineering and Medical Physics, funded partly by the European Union and Marie Skłodowska-Curie actions.

    The main topics of the projects are briefly described below. Any eligible candidates (please see call for the graduate school) are encouraged to contact Dr Isaksson below, with a brief CV and potential recommendations, for more information.

    Hanna Isaksson, Ph.D. hanna.isaksson@bme.lth.se

    http://bme.lth.se/research-pages/biomechanics/biomechanics/

    PhD student 1: Computational modelling and image processing of bone strength and hip fracture risk assessment 

    Project: 

    Osteoporosis is defined as low bone mass, and results in a markedly increased risk of skeletal fractures. Development of new drugs to reduce bone loss or increase bone mass is promising. However, it requires that the individuals at risk can be accurately identified. Current osteoporosis diagnostics is largely based on measurements of bone mineral density (BMD), using 2D image obtained with dual energy X-ray absorptiometry (DXA). Novel methods that account for all characteristics of the bone and their influence on the bone’s resistance to fracture are needed.

    The overall objectives are to integrate functional imaging of bone (clinical imaging together with mechanical modelling of bone strength) to improve prediction of fracture risk. This will be accomplished by combining DXA images with a pre-developed shape model, and finite element analysis (FEA).

    First, clinical images with different resolution and level of details (ranging from DXA to high resolution cone beam CT) will be used to develop computational models using FEA. It will allow determination of the required features (e.g. anisotropy, cortical thickness, etc) to for accurate prediction of bone strength. Validation will be achieved by comparison with existing experimental mechanical testing data. Secondly, the findings will be implemented in a statistical shape and appearance model to determine if the modelling can lead to a more accurate prediction of fracture risk.

    The project includes primarily numerical studies, but also involves some experimental work. It is a collaborative project with a 3 months secondment period at University of Eastern Finland, Kuopio, Finland.

    PhD student 2: Computational modelling of Achilles tendon biomechanics and mechanobiology 

    Project: 

    Tendons connect muscles to bones and enable energy-efficient locomotion. The Achilles tendon is the largest and the most commonly injured tendon in the human body. Ruptures often occur during recreational sport activities, but can also be a result of ageing. Mechanical loading is a prerequisite for tendon healing. Controversial and often unsuccessful treatments of tendon

    ruptures could be improved by elucidating how loading affects the biomechanics of intact tendons and the mechanobiological aspects of tendon healing.

    The aim is to investigate how mechanical loading influences homeostatic and healing tendon function, structure and composition. The project includes refining and further validating an existing constitutive model for intact rat Achilles tendons. This will be conducted based on newly collected experimental data and focus on the fibre recruitment process and damage mechanisms in tendons. Next in the order is to develop and validate an adaptive mechanoregulatory model for tendon repair. The development of a computational mechanobiological scheme to predict the influence of mechanical loading on tendon tissue regeneration will be key to the project, in order to help elucidate the mechanobiological mechanisms at play.

    The project involves primarily numerical studies and is a collaborative project with a 3 month secondment period at University of Eastern Finland, Kuopio, Finland.

    Requirements for both PhD students 

    The successful candidates should be eligible to be admitted to the graduate school and also has the following:

    Essential qualifications

    – MSc degree (or close to graduating) in biomedical engineering, medical physics, mechanical engineering, or other relevant field.

    – The mobility rules of the EU funded graduate school require that a PhD student cannot have resided for more than 12 months over the past 3 years in the country which he/she applies to.

    Advantageous qualifications

    – Knowledge and experience in biomechanics, finite element analysis, matlab and image processing.

    – Documented ability to express yourselves in English in speech and writing, to work independently, and to work effectively in a multidisciplinary team, e.g. during the M.Sc. thesis.

    Primary supervisor 

    Hanna Isaksson, Ph.D. Associate professor Department of Biomedical Engineering Lund University Box 118, 221 00 Lund, Sweden Email: hanna.isaksson@bme.lth.se Web: http://bme.lth.se/staff/isaksson-hanna Web: http://bme.lth.se/research-pages/biomechanics/biomechanics/

    10 PhD positions in the doctoral school BIOINTERFACE at TU Wien (Austria)

    Within BIOINTERFACE – a newly created doctoral training program at TU Wien, Austria – ten PhD positions are available . BIOINTERFACE is a highly interdisciplinary doctoral training porogram, which aims at exploring the interface between inorganic and bio-organic systems towards applications in bio- nanotechnology. Short descriptions of the ten PhD projects are available at the BIOINTERFACE webpage under the following link:

    http://biointerface.tuwien.ac.at/doctoral-training-program/phd-projects/

    What we offer:

    Ten three- year Ph D positions, starting between October 1 st 2016 and March 31 st 2017 , in the fields of chemical synthesis, experimental (bio-)physics/engineering as well as biomechanics, and theory/simulation. The positions are equivalent to a part-time university assistant (25 hours) position (minimum salary is EUR 1.685,30- pre-tax, 14x per year). The salary can be raised according to previous experience in the field. BIOINTERFACE provides highly interdisciplinary research projects and a cutting- edge training program including monthly seminars, lab rotation, retreats, a stay abroad, and – if applicable – industrial cooperation.

    Application  Requirements:

    A Diploma/Masters/Magister university degree in chemistry, ( bio-)physics, civil engineering, mathematics, biology, electrical engineering,  process  engineering,  biomedical engineering, materials science, mechanical engineering, or a related discipline is a prerequisite for becoming a BIOINTERFACE PhD student. Additional knowledge related to the specific projects is desirable.

    How to apply:

    Applications should be submitted in German or English language via email to:  pi.biointerface@tuwien.ac.at. Please send a single pdf-file, named “givenname_surname.pdf” The deadline for application is: September 30 2016 .

    Applications must include:

    1. curriculum vitae including a list of publications, conference contributions, and other scientific activities (if applicable)
    2. transcripts of records of the Bachelor- and Master-studies
    3. title and a short summary of the diploma/master thesis
    4. two letters of reference, of which one from MSc thesis advisor
    5. cover-letter including the specification of two preferred PhD projects (please indicate 1st and 2nd choice from the list of projects at http://biointerface.tuwien.ac.at/doctoral-training-program/phd- projects/) and a motivation for your choice.

    For informal questions please contact:

    Gerhard Kahl, Institute for Theoretical Physics (gerhard.kahl@tuwien.ac.at), Gerhard Schütz, Institute of Applied Physics (gerhard.schuetz@tuwien.ac.at), or

    Miriam M. Unterlass, Institute of Materials Chemistry (miriam.unterlass@tuwien.ac.at).

    TU Wien is an equal opportunity employer aiming to increase the proportion of women within scientific and artistic staff and thus strongly encourages qualified women to apply. Female applicants will be considered preferentially, if their abilities, aptitude and professional performance are equal with those of male applicants. Persons with disabilities are especially encouraged to apply.

     

    23rd Congress of the European Society of Biomechanics

    Featured

     

    banner-seville2r

    ESB 2017 will take place at the Higher Technical School of Engineering of the University of Seville, from the 2nd to the 5th of July 2017.

    Plenary lectures will be delivered by Prof. Ellen Kuhl (Stanford University), Dr. Walter Herzog (University Of Calgary) and Prof. José Manuel García-Aznar (University Of Zaragoza).

    Seville is the scent of orange trees under blue skies, the river, shops and streets, the barrios, the outlying areas, la Vega, el Aljarafe, las Marismas, la Campiña, the Southern and Northern Sierras, and Estepa.

    Please find out more information about the congress and scientific programme at

    https://esbiomech.org/conference/index.php/esb2017/seville/

     

    We look forward to welcome you in Seville in 2017!

     

     

    Call for Council Nominations 2016

    During the next General Assembly that will be held during our upcoming 22nd Congress of the European Society of Biomechanics in Lyon, we will elect 6 new members to the Council. The Council thus invites any regular member in good standing to candidate for a seat on the Council of our Society. More info here.