Al BASED 3D ANALYSIS OF GLENOID BONE LOSS
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Introduction

Glenoid rim defects affect the glenoid concavity
increasing the risk of recurring instability [1]. Treatment
planning currently considers 2D measures of bone loss
that tend to over- or underestimate the defect size [2],
and do not consider the impact of glenoid concavity on
glenohumeral stability [3]. Recent developments in Al
enable accurate automatic segmentation of the shoulder
bones for 3D analysis [4], however, 3D bone loss
analysis additionally requires knowledge of the
premorbid glenoid morphology. For improved shoulder
instability analysis from medical images, we
hypothesized that a deep learning network could be used
to predict the premorbid shape of the glenoid to allow
for an automatic and accurate calculation of the missing
surface area of the defect and the glenoid concavity.

Methods

Data: The scapula was manually segmented from 55 CT
images (bilateral shoulder, plane resolution: (0.42-
0.99mm), slice thickness (0.30-0.90mm)) of patients
with intact glenoids (KEK: CCER 2020-02670). Three
landmarks on the lower glenoid rim and one on the
superior glenoid tubercle were manually picked on the
resulting scapula surface models. Artificial glenoid
defects (10 per patient) of varying shapes, sizes and
locations were created by subtracting the overlapping
portion of a sphere (radius 45-60mm) from the glenoid
rim. Trained network: The data was split into training
(N=36) and test sets (N=19). A shape completion
network was trained using the nnU-Net framework [5]
with the paired complete glenoid models and
corresponding models with simulated defects. Glenoid
analysis: Using the manually placed landmarks on the
surface model, the glenoid rim was defined and the 3D
surface area calculated. The bone loss was calculated as
the percentage of missing glenoid surface area and
concavity as the radius of a sphere fitted to the surface
mesh of the lower glenoid. The accuracy of our method
(calculated relative to the ground truth) was compared
to a 3D contralateral shoulder model as an estimate of
the premorbid glenoid.

Results

Figure 1: Segmented 3D scapula models: a) With
sphere, process of simulated defect creation. b) With
simulated defect. c) With predicted glenoid (green). d)
With fitted sphere to lower glenoid to calculate glenoid
concavity.

Our proposed Al based method was significantly more
accurate than the use of the contralateral shoulder for
calculating glenoid bone loss (mean error
of -1.75+£2.22% versus -11.12 £ 12.01%), glenoid
concavity (mean error of 0.02 + 0.88 mm
versus -0.52 £3.31 mm).

Discussion

Our proposed deep learning-based method for 3D
quantification of glenoid bone loss predicted the native
glenoid with higher accuracy than the contralateral
shoulder, facilitating automatic and accurate 3D
analysis of glenoid defects. Simulated defects allowed
for accuracy validation to the ground truth. Future work
will validate the method on defective glenoids, extend it
to MRI, and assess image-based instability measures
using biplanar radiographic imaging (DBRI).
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