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Introduction 
As universal function approximators, deep neural 

networks have the potential of being the surrogate solver 

of the Navier-Stokes (NS) equations. This was recently 

demonstrated via the Physics Informed Neural Network 

(PINN) on aneurysm flows [1]. However, PINNs are 

specific to the geometry of the flow domain and require 

slow training for each new geometric scenario 

encountered. To address this, Sun et al. [2] designed a 

simple parameterization of varied vascular geometries 

and pre-trained various geometric scenarios by adding 

the geometric parameter as an input to the PINN which 

allowed for the quick prediction of new geometric cases. 

Here, we present an alternative approach, where a deep 

learning (DL) side network is cascaded to a PINN 

domain network for the pre-training of varied geometric 

cases, which has the potential to enhance network 

robustness and decrease training complexity.  

Method 
The DL-PINN network architecture is shown in Fig 1. 

The network was tested on 2D stenosis flows, where the 

vascular geometry can be varied by a parameter to 

control stenosis severity. The DL-PINN was trained 

with 5 geometries with increasing stenosis levels and 

tested on 3 geometries with stenosis levels not yet seen 

by the network. 

 
Figure 1: The architecture of the proposed DL-PINN 

network. A DL network (green) using case geometric 

parameters (𝒇) is used to determine the weights of nodes 

in the PINN network (pink). A PINN pre-layer (yellow) 

increasing order of parameters, and a hard boundary 

constraint post-layer improved performance. 

Result and Discussion 
Importance of hard boundary post-layer: no-slip 

wall velocity and inlet/outlet boundary conditions were 

incorporated as hard constraints via polynomial profiles 

across vessel diameter, and tanh profiles along vessel 

length, which were imposed onto velocity outputs from 

PINN. This improved convergence of velocity from a 

32.2% error to a 0.2% error in a test case.  

Importance of increased-order pre-layer: PINN 

nodes are typically modelled as tanh functions, but such 

networks cannot model the second-order math functions 

(such as 𝑥2 and 𝑥𝑦) well. Our inclusion of the second-

order pre-layer to calculate these functions improved 

convergence from 32.2% velocity error to 4.7%. 

Pre-training of varied geometric cases and 

predictions in unseen cases: Using our case network 

pre-trained with 5 geometric cases of varied stenosis, 

prediction of flow and pressure fields for the 3 new cases 

unseen by the network had velocity and pressure errors 

around 0.2-0.8% and 3.5-4.5%, respectively, 

comparable to errors achieved in the training cases. Fig 

2 shows the comparison with CFD results, showing a 

good match. Predictions of new cases were almost 

instantaneous, compared to the 2-4 minutes needed for 

CFD simulation of the same cases using COMSOL. 

 
Figure 2: Comparison of the results from a PINN-

predicted case and the corresponding CFD solutions. 

The order of magnitude of each quantity from the 

predicted case is the same as that from the CFD 

solution. The relative L2 error of 3.16% was achieved. 

Conclusion 
We demonstrated the feasibility of a DL-PINN network 

pre-trained to varied geometries and validated its ability 

to rapidly solve flow fields of geometric cases not yet 

seen by the network. In the future, this can be expanded 

to cover various vascular curvatures, cross-sectional 

size changes, and 3D flows. If successful, such an 

approach has important benefits. First, it can achieve 

ultra-fast, real-time fluid mechanics simulations to assist 

clinical evaluation. Second, it allows the network to 

evaluate various surgical options to find the optimal 

route, via parameterization of these options.  
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