PERFORMANCE ANALYSIS OF HEXAHEDRAL MESH-MORPHING FOR THE MENISCUS OF THE KNEE

Adam G. Kelly, Alison C. Jones, Marlène Mengoni

Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK

Introduction

Generating high-quality hexahedral meshes of highly irregular tissues for finite element (FE) simulations is a laborious and time-consuming endeavour. The meniscus is an important component of the knee and challenging structure to simulate due to multi-body contact, large deformations and nearly incompressible material properties. Simulations of this nature are more accurate and likely to converge with hexahedral meshes.

Mesh-morphing has been chosen to automatically create accurate, high-quality hexahedral meshes of meniscus geometries from a single template mesh. This work aims to assess the performance of an in-house meshmorphing strategy against a state-of-the-art hex-mesh procedure – the multi-block method (IA-FEMesh).

Methods

A set of 20 geometries (10 lateral and 10 medial) were selected which represent a variety of challenging meniscus features. Using their surface representation, 2x20 volumetric meshes were produced with either a multi-block method or our morphing strategy, using one high-quality but generic template. FE simulations with FEBio were performed as a single-condyle of the tibiofemoral joint subject to a standing compression of 500 N, incorporating idealised tibial and femoral cartilage meshes. Cartilage and meniscus were modelled as hyperelastic materials. The time taken to derive each mesh, surface error, mesh-quality and differences in simulated contact pressure and area were compared.

Results

The mesh-morphing strategy operates faster for all geometries with generation times between 83-184 s, compared to 279-8040 s for the multi-block. Overall, the multi-block method produces mesh with a lower surface error averaging 0.22 mm compared to 0.43 mm. The multi-block meshes had a lower surface error for 17/20 geometries. Mesh-morphing produces fewer very low-quality elements with an average of 0.85%, compared to 1.19% for the multi-block.

Figure 1: Surface error of the multi-block method and mesh-morphing strategy

However, the multi-block method produces fewer lowquality elements on average with 9.1% compared to 11.7%. The contact pressure distributions between the two simulations generally show strong similarities but can have different max. contact pressure locations.

Figure 2: Contact pressure distributions (MPa) for the multi-block method and mesh-morphing strategy, for two geometries with very different surface errors

Discussion

One template was used to generate a total of 20 valid hexahedral meshes of the meniscus with reasonably low surface errors. Some differences in the contact pressure occur, mostly from mesh artefacts from the multi-block method. Other differences occur from subtle local and global surface errors. The morphed meshes distribute contact pressures more evenly due to having a smoother geometry. Although, morphed meshes that have larger surface errors tend to produce higher contact pressures. Larger surface errors are caused from a shrinking effect from the morphing strategy and can lead to a smaller mesh than the target geometry. This will require optimizing the default mesh-morphing parameters.

The mesh-morphing strategy offers a faster, competitive and automated alternative to the semi-automatic multiblock method, with no significant difference in FE simulation outcomes.

Acknowledgements

We thank Prof. D. M. Pierce, Dr. Rodriguez-Vila and Dr. Day for supplying and curating the target meniscus geometries. This work was supported and funded by EPSRC.

