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Introduction 

Osteogenesis imperfecta (OI), also known as "brittle" 

bone disease, is a rare heritable bone disorder. In most 

cases, OI is caused by mutations in genes encoding type 

I collagen (COL1A1 and COL1A2), leading to 

increased bone fragility attributed to reduced bone mass 

and quality. OI can be categorized according to disease 

severity into type I (mild), type II (perinatally lethal), 

type III (severe) and type IV (moderate) [1]. OI types 

differ quite markedly in disease severity and thus in 

fracture rates [2]. High resolution peripheral 

quantitative tomography (HR-pQCT) has emerged as an 

imaging modality that may allow improved clinical 

fracture prediction in individuals with OI [3]. 

Surprisingly, despite differences in disease severity, 

HR-pQCT parameters overlap considerably between OI 

types (I, III, or IV), which complicates the relationship 

between disease phenotype and bone fragility [4-5]. The 

aim of the study was to use a classification deep neural 

network (DNN) and random forest (RF) model capable 

of predicting OI types, to identify, in a non-biased 

manner, structural factors learned by the models from 

HR-pQCT images of human radii that explain 

differences in bone fragility between OI types.  

 

Method 

Ninety-six HR-pQCT images were acquired (XtremeCT 

II, 60.8µm voxel size, 168 slices, 95mA, 60 kVp) of 

distal radii (4% of limb length) from adult OI patients 

(age: 24-75, male and female, OI type I, III and IV). A 

deep neural network (Bone structure assessment model 

[BSAM]: 15 layers with eight convolutional, three 

pooling and two fully connected layers and two dropout 

layers) was developed as a refined version of our 

published BAAM network [6] to perform the OI type 

classification task. An 80/20 training/test split was used, 

and standard augmentation was performed. Training 

was carried out for 2000 iterations (TensorFlow 1.7). 

Saliency maps (SM) were calculated resulting in a heat 

map demonstrating the localization of pixel importance 

for the OI classification task. Masks for trabecular, 

cortical and soft tissue were extracted. Attention, as 

normalized summation of pixel intensities of the 

saliency maps for each mask were determined. A RF 

model was trained on HR-pQCT morphological 

parameters (BV/TV, Tb.vBMD, Tt.vBMD, Met/Inn, 

TbTh, Tb.Sp, Tb.N., Tb.1/N.SD, Tt.Ar., Tb.Ar., 

Ct.vBMD, Ct.Th, Ct.Ar,). The importance of each 

structural feature on the model predictions was analyzed 

to identify OI type-related alterations. The trained 

models are then applied on the test set.  

 
Figure 1: BSAM architecture 

 

Results 

The BSAM reached 94% accuracy in OI type 

classification (loss: 0.03). Trabecular compartment 

received higher attention than cortical (p<0.01, 

ANOVA). The RF model reached 15 out of 16 correct 

predictions. Analyzing the importance of each 

morphological parameter on OI classification revealed 

Tb.N. (14%), Ct.Th. (12%), Tb.1/SD (10%) and Tb.Sp. 

(10%) as the most decisive features for the model.  

 

 
Figure 2: A) BSAM sample saliency maps and 

corresponding structural features to OI type I (top), III 

(middle) and IV (bottom). B) Morphological feature 

importance for OI classification of the RF model. 

 

Discussion 

Our DNN model points toward OI type being primarily 

manifested in the trabecular bone compartment. This is 

further supported by the RF model, as 3 of the 4 most 

important features are trabecular. The developed BSAM 

can further automatically extract structural features and 

precise locations correlated to each OI type through 

relating SMs to bone morphological parameters and 

their importance. This allows a more detailed 

assessment of OI manifestation in bone. In future, 

BSAM could be trained on HR-pQCT-based FE 

simulations to further include mechanical parameters. 
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