Category Archives: Post-doc positions

PostDoc @Heriot-Watt Edinburgh

Postdoctoral Research Associate in Multiscale Mechanics of Mineralised Tissues

Vacancy Details

Job ReferenceIRC27904
Closing Date8 Aug 2020 23:00 (UK time)
Salary£32,817– £38,017 (Grade 7)
LocationEdinburgh
DepartmentInstitute of Mechanical, Process and Energy Engineering
CategoryAcademic and Research
StatusFull-time
Duration of Contract (months)36 months
Informal enquiries by email to:Dr Uwe Wolfram at u.wolfram@hw.ac.uk
How to apply:https://www.hw.ac.uk/uk/jobs/job_SVJDMjc5MDQ.htm

About our Team

We are excited to be able to recruit a postdoctoral research associate in the area of Multiscale Mechanics of Mineralised Tissues to the Biomechanics group at Heriot-Watt University. The selected candidate will join a multidisciplinary team to work on a Leverhulme Trust funded project seeking to understand rapid cold-water coral habitat loss in a future ocean. Specifically, we seek to understand how climate change induced ocean acidification and bioerosion affect the multiscale mechanical properties of cold-water coral reefs and how these effects may accelerate reef-habitat loss.

The selected candidate will be based at Heriot-Watt University joining a multidisciplinary team working on multiscale mechanics of biologic tissues and structures. This is a joint project with the Changing Oceans Group at the University of Edinburgh, which conducts incubation experiments on live and dead coral skeletons under projected future conditions. The selected candidate will benefit from co-supervision by Dr Sebastian Hennige of the Changing Oceans Group along with visiting scholar access to University of Edinburgh.      

Detailed Description of Position

Ocean acidification threatens deep-sea coral reefs and could lead to dramatic and rapid loss of the habitat they make. Here we combine biology and engineering approaches to quantify the risk and time scales of such habitat loss. Increases in porosity and loss of skeletal material in structurally critical parts of the coral reef foundation could lead to physical habitat collapse on an ecosystem scale, reducing its potential to support associated biodiversity. Our unique interdisciplinary approach will identify the timescales and conditions such ‘tipping points’ would occur within, to allow more effective future management of these vulnerable ecosystems.

To do so, we seek to (i) quantify skeletal dissolution rates under different future oceanic conditions (primarily delivered by University of Edinburgh); (ii) develop a simulation framework that allows quantification of failure rates of coral skeletons; (iii) use results from (i) and (ii) to scale up to larger reef-type structures and estimate tipping points of habitat loss. The successful candidate will also develop and conduct characterisation and validation experiments based on extensive expertise in multiscale experimentation. The successful candidate will work closely with our collaborators (with regular joint meetings) to link results of (ii) and (iii) to the marine-biological aspects (i). The successful candidate will also work with our partners within JNCC (Joint Nature Conservation Committee) and NOAA (National Oceanic and Atmospheric Administration, US Department of Commerce) to foster dissemination along the policy making route. This is an exciting new project with scope to contribute significantly to tackling some of the most pressing global challenges.

The successful candidate will make use of our excellent facilities including dedicated biomedical tissue laboratories, and cutting-edge equipment including a broad suite of tissue processing equipment, mechanical testing equipment, imaging equipment (micro-CT, microscopy and optical coherence tomography) and a dedicated node on a high-performance cluster for computation.

We are looking for someone who is ambitious and collaborative, with a passion for developing solution for pressing global challenges.  The post will be for 36 months.  There may be the opportunity for the post holder to develop their own fellowship applications during this post, with support from the PI.

The successful candidate will work in two departments that have an international reputation for engineering, strong expertise in biomedical engineering as well as marine biology, and world-class equipment and facilities.  

Key Duties and Responsibilities

The successful appointee will be expected to undertake the following:

  • Plan and execute work plans to progress investigations into the multiscale mechanical behaviour from ‘crystal building block to reef’
  • Lead and contribute to research dissemination (i.e. papers and conference attendance)
  • Work closely with the PI and collaborators to analyse, interpret, and present experimental and modelling data
  • Work closely with other postdoctoral associates, PhD students and collaborators to ensure smooth research team function
  • Participate actively in group meetings
  • Take a leadership role to ensure the effective running of computational analyses.
  • Participate in outreach activities, which may involve talks for the general public, attendance at science festivals or and preparation of demonstrators.
  • Participate in advisory meetings with Joint Nature Conservation Committee (JNCC), which may involve talks to executive decision makers
  • Responsibilities will also include assistance in the day-to-day running of the simulations and computational analyses using own servers as well as HWUs HPC cluster, liaising with companies and external collaborators.
  • Contribute, under supervision, to the planning of research projects, including the development of new grant/contract proposals.

Please note that this job description is not exhaustive, and the role holder may be required to undertake other relevant duties commensurate with the grading of the post.  Activities may be subject to amendment over time as the role develops and/or priorities and requirements evolve. 

Education, Qualifications and Experience

this will form the basis of your selection criteria and shortlisting. Please use the examples below and delete /add as appropriate.

Essential Criteria

  • Applicants should a PhD in biomedical engineering, physics, material science, or a related subject (Applicants should have submitted their PhD thesis first draft by the start date.) broadly in one of the following areas:
    • Multiscale constitutive modelling (ideally but not necessarily biologic hard or soft tissues)
    • Multiscale mechanics of materials (mathematically, experimentally, or theoretically)
    • Image based multiscale computational modelling
  • Experience of programming and simulation
  • Working with image data (key word: imaged based modelling)
  • Experience working in a multidisciplinary environment/team and openness to dive into a novel research field in biomechanics
  • Excellent verbal and written communication skills
  • A record of high quality, peer-reviewed publications and evidence of contribution to the writing of these publications proportionate to opportunity.
  • Willingness and ability to travel for dissemination, outreach, and public engagement activities.

Desirable Criteria

  • Experience in conducting validation and material characterisation experiments (nanoindentation, micropillar testing, macroscopic testing, or similar)
  • Experience in using/developing artificial neural network approaches
  • Experience of research-student supervision.

When applying, please include a cover letter addressing these selection criteria. 

The intention is to hold the interviews towards the end of week commencing 17/8/2020.

Job Share

At Heriot-Watt University we understand that being diverse makes us better which is why we support a culture of respect and equal opportunity, and value diversity at the heart of what we do. We want to increase the diversity of our workplace to underpin a dynamic and creative environment.

While this is a full-time post, flexible percentage working regimes may be possible for the right candidate.

Post-doc in Biomedical Engineering, Biomechanics, partial placement MAX IV

Lund University, Faculty of Engineering, Biomedical engineering

Lund University was founded in 1666 and is repeatedly ranked among the world’s top 100 universities. The University has 40 000 students and more than 8 000 staff based in Lund, Helsingborg and Malmö. We are united in our efforts to understand, explain and improve our world and the human condition.

LTH forms the Faculty of Engineering at Lund University, with approximately 9 000 students. The research carried out at LTH is of a high international standard and we are continuously developing our teaching methods and adapting our courses to current needs.

MAX IV is a Swedish national large-scale research laboratory hosted by Lund University. It provides scientists from Sweden as well as internationally, with state-of-the-art instrumentation for research in areas such as engineering, physics, structural biology, chemistry and nanotechnology. Fully developed it will receive more than 2 000 scientists annually, conducting ground-breaking experiments in materials and life sciences using the brilliant X-ray light.


Subject description

Background:  The research in the biomechanics group is focused on understanding the link between mechanics and biology in the musculoskeletal system, with emphasis on solving problems in orthopaedics. Tissue characterisation, using synchrotron based techniques has become vital to understand the tissue’s function-, structure-, composition relationships.

NanoMAX and SoftiMAX are both nanoprobe beamlines, designed to take full advantage of MAX IV’s exceptionally low emittance and the resulting coherence properties of the X-ray beam enabling imaging applications at unprecedented resolution. NanoMAX uses hard X-rays, and has been operational since 2017. Available techniques include scanning X-ray diffraction and coherent imaging in the Bragg geometry, forward ptychography and coherent diffraction imaging, as well as X-ray fluorescence (XRF) imaging. SoftiMAX is a soft X-ray beamline, planned to be in user operation in 2021. Available techniques include Scanning Transmission X-ray Microscopy (STXM), ptychography, and XRF imaging.

Goals: The current position is primarily dedicated to XRF, with the main aim to develop a more intuitive data analysis pipeline with emphasis on applications for life science-oriented users. The goals will be accomplished through the framework of the research questions addressed within the biomechanics group with focus on understanding the function-structure-composition relationships in mineralized tissues. Specific emphasis is on elucidating the role of Zinc in mineralization of bone.

This employment is at Biomedical Engineering, but with a major part spent at MAX IV laboratory.

Work duties / Tasks

The main duties involved in the post-doctoral position is to conduct research and beamline development. User support is also included, but up to no more than 20% of working hours. The position shall include the opportunity for three weeks of training in higher education teaching and learning.

Detailed description of the work duties, such as:

  • The post-doc is expected to take responsibility for designing, planning and developing an intuitive and more automated analysis pipeline for XRF data, dedicated to life science users, connected primarily to NanoMAX and secondly to SoftiMAX.
  • The post-doc is expected to drive the research project connected to mineralization in bone using XRF.
  • Depending on interest, the post-doc may also combine XRF imaging techniques with other methods available at the beamlines (e.g. wide angle X-ray scattering, nano-diffraction, ptychography and STXM).
  • The post-doc is expected to assist with user support for relevant experiments, including experiment preparations and guiding in data analysis
  • The post-doc is expected to be active in workshops, lectures and outreach efforts towards the life science community
  • Opportunities to also supervise MSc degree projects and to assist the group when seeking external research funding is available.

Qualification requirements

Appointment to a post-doctoral position requires that the applicant has a PhD, or an international degree deemed equivalent to a PhD, within the subject of the position, completed no more than three years before the last date for applications. Under special circumstances, the doctoral degree can have been completed earlier.

 
Essential requirements:

  • Very good oral and written proficiency in English.
  • A background in physics, applied mathematics, engineering or other relevant fields
  • Demonstrated experience in synchrotron-related techniques, where experience in XRF Imaging holds special merit
  • Demonstrated experience in X-ray data analysis
  • Scientific computer programming skills, preferably in Python (or C++), and experience with large scale data processing.
  • Demonstrated ability to work in teams and interact with a diverse group of scientists and technical staff in a dynamic environment.

Additional requirements are considered assets

  • Experience from the life-science field with biological tissue characterization is meriting.
  • Experience with collaborative software development for scientific applications is meriting.
  • Experience in providing user support is meriting

Assessment criteria and other qualifications

This is a career development position primarily focused on research. The position is intended as an initial step in a career, and the assessment of the applicants will primarily be based on their research qualifications and potential as researchers.

Particular emphasis will be placed on research skills within the subject.

For appointments to a post-doctoral position, the following shall form the assessment criteria:

  • A good ability to develop and conduct high quality research.
  • Scientific communication skills.

 
Additional assessment criteria:

The post-doc should be able to independently drive his/her own project, as well as writing scientific publications. The post-doc should be able to assist users. International networks and experience is considered positive.

 
Consideration will also be given to good collaborative skills, drive and independence, and how the applicant’s experience and skills complement and strengthen ongoing research within the department, and how they stand to contribute to its future development.

Terms of employment This is a full-time, fixed-term employment of a maximum of 2 years. The period of employment is determined in accordance with the agreement “Avtal om tidsbegränsad anställning som postdoktor” (“Agreement on fixed-term employment as a post-doctoral fellow”) between Lund University, SACO-S, OFR/S and SEKO, dated 4 September 2008.

Instructions on how to apply

Applications shall be written in English. LTH uses a special qualifications portfolio to report and document qualifications. Draw up the application in accordance with the following outline and attach it as three PDF files (in the recruitment system). Read more here:

http://www.lth.se/english/working-at-lth/to-apply-for-academic-positions-at-lth/

Lund University welcomes applicants with diverse backgrounds and experiences. We regard gender equality and diversity as a strength and an asset. We kindly decline all sales and marketing contacts.

To apply, please click the button “Login and apply”

Type of employmentTemporary position longer than 6 months
Contract typeFull time
First day of employmentBy agreement
SalaryMonthly salary
Number of positions1
Working hours100
CityLund
CountySkåne län
CountrySweden
Reference numberPA2020/2399
ContactHanna Isaksson, +46462221749, hanna.isaksson@bme.lth.se
Union representativeOFR/ST:Fackförbundet ST:s kansli, 046-222 93 62SACO:Saco-s-rådet vid Lunds universitet, 046-222 93 64SEKO: Seko Civil, 046-222 93 66
Published30.Jun.2020
Last application date16.Aug.2020 11:59 PM CET

Postdoc Computational modeling of kidney toxin transport

PublishedDeadlineLocation
25 Jun12 JulMaastricht

The department of Cell Biology-Inspired Tissue Engineering (cBITE) at the MERLN Institute for Technology-inspired Regenerative Medicine at Maastricht University in the Netherlands invites applications for a post-doctoral position. The post-doctoral researcher will perform cutting-edge research in computational modeling methods applied to regenerative medicine and more specifically, to kidney toxin transport in microfluidic set-ups, organoid culture systems and/or bioartificial kidney devices.

JOB DESCRIPTION

Regenerative medicine holds the promise to cure many of what are now chronic patients, restoring health rather than protracting decline, bettering the lives of millions and at the same time preventing lifelong, expensive care processes: cure instead of care. More specifically, at present, dialysis and transplantation are the only treatment options for end-stage kidney disease. In the Netherlands alone, 6,500 people currently depend on dialysis, approximately 1,300 of which will die this year. Regenerative medicine offers an alternative treatment in the form of a bioengineered kidney. As a first step, the partners of RegMed XB will work towards creating a functional subunit of a bioengineered kidney. This functional subunit is the nephron, of which there are approximately one million in the adult kidney. In order to inform the in vitro experiments as well as design a bioartificial kidney as an intermediate step towards a fully bioengineered kidney, this project will use computational models to simulate toxin transport and calculate the flow and geometry requirements for adequate toxin removal in various set-ups: microfluidic, organoid culture systems and bioartificial devices.

Project description:

  • Computational modeling of toxin transport, computational fluid dynamics, to inform the design of in vitro kidney organoid experiments and/or bioartificial kidney devices
  • Parameter optimization and sensitivity analysis
  • Analysis and integration of various in vitro/in vivo data for model calibration

What we offer:

  • Computational ecosystem at Maastricht University: Institute for Data Science (IDS), Department of Knowledge Engineering (DKE) and Maastricht Centre for Systems Biology (MacsBio)
  • Excellent computational and experimental facilities to validate the in silico analyses and predictions in vitro/in vivo
  • Interdisciplinary environment within MERLN and the RegMed XB consortium

Project embedding:

The project will be coordinated by the MERLN Institute for Technology-Inspired Regenerative Medicine (http://merlninstitute.com/) at Maastricht University (UM), while closely collaborating with TU Eindhoven, Utrecht University and Leiden University as part of RegMed XB, which stands for “Regenerative Medicine Crossing Borders”. RegMed XB is a virtual institute composed of universities, health foundations, governments and private companies in the Netherlands and Belgium. The partners work together to tackle some of the greatest challenges in regenerative medicine, while building a community of researchers and companies to realize health and economic benefits. RegMed XB is best-suited for those scientists who are driven to make a difference in the lives of patients and who wish to join a growing initiative that promises to integrate entrepreneurial activities with the excellent scientific research performed within the universities. Joining RegMed XB means being part of a community working on research programs aimed to cure a chronic disease (for more information, please visit www.regmedxb.com).

REQUIREMENTS

Requirements and key expertise

  • PhD in data science, computer science, statistics, mathematics, bioinformatics, biomedical informatics, artificial intelligence, or equivalent
  • Demonstrated ability to work independently as well as in a team
  • Strong scientific background and publication record
  • Expertise in computational modeling, computational fluid dynamics
  • Good programming skills (for example Comsol, Matlab, Python, R, VCell)\
  • Basic knowledge of image processing and analysis
  • Affinity with regenerative medicine
  • Good oral and written English communication

CONDITIONS OF EMPLOYMENT

Fixed-term contract: 1 year.

The position is temporary for the duration of the project (12 months). Depending on experience and qualification, the gross monthly salary is scale 10 (max. € 4.402,-), based on a full-time appointment.

The terms of employment of Maastricht University are set out in the Collective Labour Agreement of Dutch Universities (CAO). Furthermore, local UM provisions also apply. For more information look at the website www.maastrichtuniversity.nl > Support > UM employees.

EMPLOYER

Maastricht University

Maastricht University (UM) is the most international university in the Netherlands and, with more than 18,000 students and 4,400 employees, is still growing. The university stands out for its innovative education model, international character and multidisciplinary approach to research and education. Thanks to its high-quality research and study programs as well as a strong focus on social engagement, UM has quickly built up a solid reputation. Today it is considered one of the best young universities in the world

DEPARTMENT

MERLN Institute

The MERLN Institute for Technology-inspired Regenerative Medicine focuses on developing novel and challenging technologies to advance the field of tissue and organ repair and regeneration through, amongst others, the development of high-throughput material platforms to screen cell-biomaterial interactions. MERLN consists of an interdisciplinary team of researchers including fields as (stem cell) biology, materials engineering, chemistry, micro/nanofabrication, additive manufacturing, etc. The scientists at MERLN have an extensive network of collaborators within research institutions in and outside the Netherlands as well as with a number of biomedical companies, including their own spin-off companies, as entrepreneurship is highly fostered.

ADDITIONAL INFORMATION

The application should contain:

  • Cover letter with motivation, fit and preferred starting date
  • Statement of research interests and accomplishments, max 2 pages
  • CV including a list of publications
  • Contact information of two references

For more detailed information you can contact dr. A. Carlier: a.carlier@maastrichtuniversity.nl.

More details:

https://www.academictransfer.com/en/292752/postdoc-computational-modeling-of-kidney-toxin-transport/

Post-doctoral researcher in Biomechanics at Uppsala University, specifically numerical analysis of injectable materials for spinal applications

Published: 2020-01-20

Uppsala University is a comprehensive research-intensive university with a strong international standing. Our mission is to pursue top-quality research and education and to interact constructively with society. Our most important assets are all the individuals whose curiosity and dedication make Uppsala University one of Sweden’s most exciting workplaces. Uppsala University has 44.000 students, 7.100 employees and a turnover of SEK 7 billion.

The Division for Applied Materials Science, Department of Materials Science and Engineering, the Ångström Laboratory.

The position is for two years starting as soon as possible. 

Tasks: The overarching goal is to evaluate different implant materials for spinal applications, and in particular their suitability for treatment of vertebrae and intervertebral discs.Mainly numerical methods will be used, such as finite element analysis, although some experimental work also will take place. A natural part of the work lies in reporting results, both in scientific journals and at conferences. The project is funded by the EU, and in particular EIT Health.

Qualifications required: To qualify for an employment as a post-doctor, the applicant must hold a PhD degree or a foreign qualification deemed equivalent to a PhD, and the PhD degree must have been obtained no more than three years prior to the application date; however, for example, periods of sick leave or parental leave are deducted from the three-year period.

For this position a PhD degree in engineering physics, mechanical engineering, biomedical engineering, or similar in nearby subjects, is required.

An interest in numerical modelling is a requirement, and experience in biomedical engineering is an advantage. The ability to lead and advance projects, as well as collaborative skills, is important.

Very good written and verbal skills in English is a must.

Uppsala University strives to be an inclusive workplace that promotes equal opportunities and attracts qualified candidates who can contribute to the University’s excellence and diversity. We welcome applications from all sections of the community and from people of all backgrounds.

For further information about the position please contact Professor Cecilia Persson, Cecilia.persson@angstrom.uu.se.

Salary: Individually negotiated salary.

Starting date: As soon as possible.

Type of position: Temporary position for two years.

You are welcome to submit your application no later than February 14 2020, UFV-PA 2019/4623. 

In case of disagreement between the English and the Swedish version of this announcement, the Swedish version takes precedence.

Are you considering moving to Sweden to work at Uppsala University? If so, you will find a lot of information about working and living in Sweden at www.uu.se/joinus. You are also welcome to contact International Faculty and Staff Services at ifss@uadm.uu.se.

Please do not send offers of recruitment or advertising services.

Submit your application through Uppsala University´s recruitment system. More details:

https://www.uu.se/en/about-uu/join-us/details/?positionId=311258

POSTDOCTORAL FELLOW in PARIS

Project information:

The “Birdsong for Human(e) voices” project is funded by the CRI and is led by Dr. Pauline Provini. More information on the project: https://projects.cri-paris.org/projects/tY6OqgWS/summary

Job Description Summary:

We are searching for a highly motivated, independent, multidisciplinary postdoctoral researcher to be part of a team focusing on understanding the biomechanics of birdsong. The postdoctoral researcher will play a substantive role in planning and conducting research by using quantitative modelling methods. In close collaboration with the Principal Investigator, the postdoctoral researcher will

  • Participate to the collection of experimental data (multiple X-ray and light high-speed videos, Particle Image Velocimetry data, acoustic data, etc.) of different species of birds during vocalization.
  • Fluid dynamics analysis (CFD model) of bird vocalization.
  • Aero-acoustic modelling of birdsong based on experimental data collected by the team.
  • Draft and publish scientific papers derived from the data.
  • Attend annual scientific meetings to present research derived from the project research.
  • Actively participate to meetings, seminars, and CRI life in general.

Minimum Qualifications:

PhD qualification with relevant research experience in biomechanics (e.g. engineering, modelling) or a closely related field.

Additional positive qualifications:

Specific expertise in one or more of the targeted experimental techniques (PIV, XROMM, and acoustic recordings), experience with live animals, and knowledge of the functional morphology of vertebrates are considered as additional positive elements for the candidate. An interdisciplinary background is highly appreciated.

Typical Hiring Range: Full-Time job ±2200 Euro/month (net) according to the INSERM salary scale.

Location: Centre de Recherche Interdisciplinaire, 8bis Rue Charles V, 75004 Paris France.

Institution information:

The Center for Research and Interdisciplinarity (CRI) experiments and spreads new ways of learning, teaching, conducting research and mobilizing collective intelligence in life, learning and digital sciences. The CRI promotes scientists who thrive in dynamic environments, are inspired and motivated by daily interactions with diverse peers, work best in teams and comfortably mix disciplines, rearranging, straddling field boundaries and wish to explore uncharted domains.

Job Open/Close Date: Fall 2020/ Summer 2022.

Required Documents

To apply for the position, please send the following documents to Pauline.provini@cri-paris.org:

  1. Curriculum Vitae
    1. Cover letter summarizing research interests, professional experience, and career goals.
    1. Names and Contact Information for References

Please have 2 recommendations forwarded directly to Dr. Pauline Provini email address by those individuals providing the references. These should not come from the applicant.

Review of applications will begin on September 15th and continue until the position is filled.

Two Post-Doc and/or post-graduate Research Assistant positions at Università Campus Biomedico di Roma.

In the context of several National and International Grants, we are seeking two outstanding Post-Doc researchers and/or motivated post-graduate Research Assistants to join us in developing new wearable devices, systems, and data analysis tools for physiological and physical activities monitoring.

The ideal candidate should have the following expertise:
– Relevant publications in international journals and experience in fundraising
– Fluent English is essential
– Excellent interpersonal skills including team working and a collegiate approach. Self-motivation, initiative, and independent thought/working.
– Proficient in MATLAB, Python, C, C++ programming
– Experience in one or more of the following topics:

1. Wearable systems design and development, encompassing electronic design, assembly and testing, microcontroller-based programming.
2. Body Sensor Networks
3. Real-time data acquisition and processing and related algorithms
4. Experimental protocols on human subjects

We will appreciate if you could send your interest to apply by email to E. Schena (e.schena(AT)unicampus.it), D. Formica (d.formica(AT)unicampus.it) and C. Massaroni (c.massaroni(AT)unicampus.it), including a motivation letter detailing how your research profile relate to the project and a CV.

PhD and Post-Doc positions @University of Leuven

MULTI-SCALE ANALYSIS OF MUSCULOSKELETAL AND CARTILAGE LOADING DURING LOCOMOTION. MULTI-SCALE ANALYSIS OF MUSCULOSKELETAL AND CARTILAGE LOADING DURING LOCOMOTION. PHD VACANCY MULTI-SCALE ANALYSIS OF MUSCULOSKELETAL AND CARTILAGE LOADING DURING LOCOMOTION.

In the human movement biomechanics research group, we study the mechanical loading in different musculoskeletal tissues during normal and pathological movement and relate them to tissue adaptation. The role of mechanical loading in cartilage degeneration and osteoarthritis (OA) development is currently one of the central themes in our research.Website unit

Responsibilities

We use multi-scale models of the musculoskeletal system informed by in vitro bioreactor experiments, together with motion data collected using 3D Mocap and inertial measurement (IMU-) systems. These model-based insights will ultimately be used to define surgical or therapeutic strategies to optimize musculoskeletal loading and prevent degeneration. 
This research line runs in close collaboration with different groups in KU Leuven, more specific the research group on Tissue Homeostasis and Disease (Prof. Rik Lories), the Institute for Orthopedic Research and Training (Prof. Lennart Scheys) and the Biomechanics Research Unit of the mechanical engineering department (Prof. Jos Vander Sloten and Prof. Nele Famaey).


Profile for PostDoc

This position is open to interested postdoctoral fellows with an interest in relating human movement to musculoskeletal and cartilage loading and eventually tissue adaptation.

The candidate must hold a master degree in biomedical/mechanical engineering or human movement sciences in which multi-scale modelling, musculoskeletal modelling, rigid body simulations or finite element analysis were used.

You will develop and test a multiscale modelling approach based on in vivo and in vitro experiments. 

You quantify the mechanical loading and relate this to the biological response of the cartilage in terms of homeostasis, degeneration or regeneration.

You will assist in further developing these research lines and writing of research proposals in this area.

You will supervise master student projects in these research areas.

You will contribute to teaching classes in the human movement sciences, physical therapy and biomedical engineering program depending on the candidate’s profile.

You will provide administrative and technical support of activities within the research group, department or faculty.

Candidates planning their PhD thesis defense in summer 2019 are encouraged to apply as well.

he candidates will be asked to demonstrate his expertise using dedicated software tools (e.g. Opensim, FEbios, Abaqus, Anybody) at the time of the interview. 

Previous experience with in vivo and in vitro measurements is of additional value.

The candidate should be highly interested in working in a multi-disciplinary environment consisting of engineers, physical therapists and medical doctors.

Offer

Financing:available for 1 year

Type of Position: Fellowship

Timing:Applications should be received by July 1, 2019. Interviews are planned during second half of July 2019. Starting date is negotiable, but preferentially September 2019.

Duration of the Project: The position will be assigned initially for 1 year. The candidate will be supported to apply for personal funding.

Interested?

For more information please contact Prof. dr. Ilse Jonkers, tel.: +32 16 32 91 05, mail: ilse.jonkers@kuleuven.be or Prof. dr. Lennart Scheys, tel.: +3216340885, mail: lennart.scheys@kuleuven.be.You can apply for this job no later than July 01, 2019 via the online application toolKU Leuven seeks to foster an environment where all talents can flourish, regardless of gender, age, cultural background, nationality or impairments. If you have any questions relating to accessibility or support, please contact us at diversiteit.HR@kuleuven.be.

Website: https://www.kuleuven.be/personeel/jobsite/jobs/55142074?hl=en&lang=en


Profile for PhD student

This position is open to interested PhD candidates with an interest in relating human movement to musculoskeletal and cartilage loading and eventually tissue adaptation.

The candidate must hold a master degree in biomedical/mechanical engineering or human movement sciences in which multi-scale modelling, musculoskeletal modelling, rigid body simulations or finite element analysis were used.

You will develop and test a multiscale modelling approach based on in vivo and in vitro experiments. 

You quantify the mechanical loading and relate this to the biological response of the cartilage in terms of homeostasis, degeneration or regeneration.

You will assist in further developing these research lines and writing of research proposals in this area.

You will supervise master student projects in these research areas.

You will contribute to teaching classes in the human movement sciences, physical therapy and biomedical engineering program depending on the candidate’s profile.

You will provide administrative and technical support of activities within the research group, department or faculty.

Candidates planning their master thesis defense in summer 2019 are encouraged to apply as well.

he candidates will be asked to demonstrate his expertise using dedicated software tools (e.g. Opensim, FEbios, Abaqus, Anybody) at the time of the interview. 

Previous experience with in vivo and in vitro measurements is of additional value.

The candidate should be highly interested in working in a multi-disciplinary environment consisting of engineers, physical therapists and medical doctors.

Offer

Financing:available for 1 year

Type of Position: Fellowship

Timing:Applications should be received by July 1, 2019. Interviews are planned during second half of July 2019. Starting date is negotiable, but preferentiallySeptember 2019.

Duration of the Project: The position will be assigned initially for 1 year. The candidate will be supported to apply for personal funding.

Interested?

For more information please contact Prof. dr. Ilse Jonkers, tel.: +32 16 32 91 05, mail: ilse.jonkers@kuleuven.beYou can apply for this job no later than July 01, 2019 via the online application toolKU Leuven seeks to foster an environment where all talents can flourish, regardless of gender, age, cultural background, nationality or impairments. If you have any questions relating to accessibility or support, please contact us at diversiteit.HR@kuleuven.be.

Website: https://www.kuleuven.be/personeel/jobsite/jobs/55119359?hl=en&lang=en

Senior Research Associate University of Portsmouth – Faculty of Science

Employment type: Fixed-term contract for 6 months

Interview date: 28 March 2019

We are seeking to appoint a Senior Research Associate (SRA) to contribute to the project “3D printing of complex scaffolds for the repair of osteochondral defects” developed in collaboration between the Biomaterials and Drug Delivery group (http://www.port.ac.uk/school-of-pharmacy-and-biomedical-sciences/research/biomaterials-and-drug-delivery/) and the Zeiss Global Centre (http://www.port.ac.uk/school-of-engineering/zeiss-global-centre/) at the University of Portsmouth.

Osteochondral lesions are painful, and predispose to osteoarthritis (OA), which is unquestionably one of the most important chronic health issues in humans, affecting an estimated 8.5 million people in the UK only. Due to the absence of vascularisation in cartilage, its regenerative capacity is limited, and treatment is required for repair. Severe limitations of current treatments, such as microfracture and autografts, have inspired research into more effective tissue engineering strategies, involving the implantation of stem cells able to repair the tissue. The implanted stem cells must be able to differentiate both into cartilage and bone cells. The differentiation of the cells can be controlled by changes in the modulus of the implant; however, there are no current scaffold materials that allow this concurrent double differentiation. We therefore propose to use our state of the art 3D bioprinter (Cellink) – able to co-print multiple materials and cells – to develop complex structures of biocompatible polymers of selected stiffness and porosity, to study how architectural and mechanical properties of the scaffold guide cells differentiation into the two types of cells desired.

The successful candidate will have a PhD degree or equivalent with experience in tissue culture in particular with stem cells, knowledge of some of the following areas is desirable: bioengineering, mechanobiology, x-ray/confocal microscopy, mechanical testing, 3D printing and biomaterial formulation. The SRA will work in a dynamic environment and benefit from the existing collaborative research between Dr Marta Roldo (expert in the synthesis, formulation and characterisation of biocompatible materials), Dr Petko Petkov (expert in mechanical and design engineering required to adapt the 3D printing process to the higher complexity of bio 3D printing) and Dr Gianluca Tozzi (X-ray computed tomography and correlative imaging).

The post is based at the School of Pharmacy and Biomedical Science, University of Portsmouth, with the appointment effective as soon as possible or no later than 1st April 2019. For informal enquiries please contact Dr Marta Roldo at marta.roldo@port.ac.uk or phone +44 (0)23 9284 3586.

Location:Portsmouth
Salary:£30,395 to £34,189 per annum
Hours:Full Time
Contract Type:Fixed-Term/Contract
Placed On:18th February 2019
Closes:9th March 2019
Job Ref:ZZ005155

webpage for applications:

https://www.jobs.ac.uk/job/BQH756/senior-research-associate

Postdoctoral Researcher in Computational Modelling for Tendon Tissue Engineering

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford

Grade 7: £32,236 – £39,609 p.a.

Applications are invited for the position of a Postdoctoral Researcher in Computational Modelling for Tendon Tissue Engineering to join an interdisciplinary team of researchers collaborating on a project led by Dr Mouthuy at the Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Oxford.

This post will be included in the activities of the Carr group as well as Professor Jerusalem’s group at the Department of Engineering Science, Oxford and Professor Waters’ group at the Mathematical Institute, Oxford and as such the postholder will be required to work across these locations.

As a Postdoctoral Researcher in Computational Modelling for Tendon Tissue Engineering you will participate in the activities of the research team in the Humanoid Bioreactor project, sharing skills and knowledge and publishing your findings in peer-reviewed journals.

You will analyse, contextualise and interpret data, write and maintain programs and protocols for data analysis as well as train and supervise graduate and undergraduate students as appropriate.

You will hold a PhD/DPhil (or near completion) in a discipline of direct relevance to computational mechanics and/or tissue engineering.
You will be competent with programming languages such as C/C++ and Matlab as well as numerical simulations, model calibration and validation.
You will have an experience in implementing mathematical descriptions of physical biological processes and you will be highly self-motivated and committed to pursuing interdisciplinary research.
Experience with handling clinical imaging data such as CT, MRI or ultrasound scans, strong competences in the use of CAD software to design materials and an ability to conduct experiments with cells and biomaterials are desirable.

This is a full-time fixed-term appointment for 3 years.
You will be required to upload a CV and supporting statement as part of your online application.
The closing date for this position is 12.00 noon on Monday 18 March 2019.

More details and applications:

https://www.recruit.ox.ac.uk/pls/hrisliverecruit/erq_jobspec_version_4.display_form?p_company=10&p_internal_external=E&p_display_in_irish=N&p_process_type=&p_applicant_no=&p_form_profile_detail=&p_display_apply_ind=Y&p_refresh_search=Y&p_recruitment_id=139124

Posdoc Position in characterization and modeling of elastic protein @ Université de Lyon (France)

Mechanical characterization and modeling of a synthetic elastic protein and its effects on the arterial function

A post-doctoral fellowship is available at the Center for Biomedical and Healthcare Engineering Mines Saint-Etienne – SAINBIOSE (INSERM-U1059) – Université de Lyon (France).

Scientific context: Elastin is the main elasticity provider for several soft tissues (such as dermis, arteries, pulmonary alveoli) in its fibrous form and a signaling molecule in cell/extracellular matrix interaction. Elastin-rich elastic fibers allow the large artery walls to transform the pulsatile blood flow ejected by the heart into a continuous blood flow in the peripheral arteries (Windkessel effect). Dysfunctions are highly correlated with diseases such as artery stenosis, aneurysm, hypertension or cardiac hypertrophy, which have strong repercussions on arterial biomechanics and can threaten the vessel integrity.
Setting aside surgery, there is currently no treatment for preventing, blocking or treating any loss of elasticity. It therefore appears, from a biomechanical point of view, that the introduction of an entity that provides elasticity within the arterial wall would be the most trivial action to stop arterial stiffening, but remains currently limited due to chemo-biological issues. The Arterylastic project, to which the thesis is linked, proposes to unlock this technological barrier using an original synthetic elastic protein (SEP) recently developed with a synthetic backbone devoted to skin engineering.

Academic context: As previously mentioned, the thesis takes place in a larger project named Arterylastic, funded by ANR, combining pluridisciplinary approaches of three laboratories in France: LBTI – the Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (UMR5305 CNRS/UCBL1 Lyon), HP2 –Hypoxie Physiopathologie Cardiovasculaire et Respiratoire (INSERM U1042 – University Grenoble Alpes) and Sainbiose (within the Center for Biomedical and Healthcare Engineering CISSAINBIOSE/INSERM U1059 – Mines Saint-Etienne). The PhD student will work at CIS, which also conducts major international research projects in the field of soft tissue biomechanics, in particular aortic aneurysms. He will collaborate with other researchers involved in ERC projects (https://www.mines-stetienne.fr/en/author/avril/, https://www.emse.fr/~badel/).

Objectives: The objective is to restore (or at least improve) arterial function and mechanical properties under conditions of elastic fibers injury. The objective will be reached if the SEP is correctly integrated into elastic fibers and if the SEP restores arterial wall elasticity and/or physiological parameters in relevant animal models. In this thesis, we will evaluate the mechanical behavior of the cross-linked SEP and of arterial samples from treated mouse models and a numerical model will be developed from experimental data to better predict treatment parameters.
The main tasks will be:
1. Experimental tests will be carried out for characterizing the macroscopic mechanical properties of the SEP and of arteries treated with the SEP. The cross-linked SEP will be characterized using tensile tests with a customized device. Mechanical parameters of treated arteries will be assessed by measuring pressure-diameter curves from mouse arteries tested in a customized tension-inflation test.
2. A multiscale numerical model of the mechanical behavior of arteries will be elaborated, taking into account their microstructural composition and morphology (bilayer, specific contributions of elastin, collagen, smooth muscle cells, possible proteoglycans) and including the effects of possible grafting of the SEP to the arterial wall. The model will be tested for arteries with competent elastic fibers, for arteries with damaged elastin and induced-tissue remodelling, and for arteries treated with the SEP.
3. The experimental results obtained at task 1 will be used to evaluate and calibrate the prediction ability of the numerical model developed in task 2. Sensitivity analysis permitting to find the optimal treatment conditions with the SEP for different types of therapeutic targets will be addressed.

Candidate profile: Candidates with strong skills in mechanics (modeling and experimental) and biomechanics are expected. Motivation and interest in bioengineering applications is recommended.

How to apply: Send CV, cover letter and letters of recommendation to claire.morin@emse.fr and avril@emse.fr.