Category Archives: Post-doc positions

UPF accepts applications for Junior Leader postdocs

In its quality as a Maria de Maeztu Center of Excellent the DTIC at University Pompeu Fabra accepts applications in the The postdoctoral fellowships programme, Junior Leader “la Caixa”


Especially, the Biomechanics and Mechanobiology Lab of the Barcelona Centre for New Medical Technologies (BCN MedTech) is looking for applicants in any of the following fields:

  • Computational multiscale biomechanics
  • Soft/hard tissue multiphysics
  • Multibody dynamics and human movement analysis
  • Computational systems biology of musculoskeletal, arterial and pulmonar tissues
  • Image analyses and machine learning applied to computational biomechanics and systems biology

Should you be interested to apply, please contact Dr Jérôme Noailly (

The postdoctoral fellowships programme, Junior Leader “la Caixa” aims to hire excellent researchers—of any nationality—who wish to continue their research career in Spanish or Portuguese territory. . Sponsored by Obra Social ”la Caixa”, the objectives of this programme are to foster high-quality, innovative research in Spain and to support the best scientific talents by providing them with an attractive, competitive environment in which to conduct excellent research.

The Junior Leader programme is divided into two different frames:

  • Incoming: 22 postdoctoral fellowships for researchers of all nationalities. They will be offered a three-year employment contract to conduct a research project at accredited centres with the Severo Ochoa or María de Maeztu distinction of excellence, Institutos de Investigación Sanitaria Carlos IIII and units evaluated as excellent and exceptional by the Fundação para a Ciência e Tecnologia of Portugal. For Spanish institutions, candidates must have resided in Spain less than 12 months in the last three years while for Portuguese institutions, candidates must have resided in Portugal less than 12 months in the last three years.
  • Retaining: 11 postdoctoral fellowships for researchers of all nationalities to carry out research at any university or research centre in Spain or Portugal. For Spanish institutions, candidates must have resided in Spain more than 12 months in the last three years while for Portuguese institutions, candidates must have resided in Portugal more than 12 months in the last three years.

By means of a complementary training programme, these fellowships are intended to consolidate research skills and to foster an independent scientific career as an option for the future.

Deadline September 26th 2018!

Apply now




Computer modeling of the mechano-biological regulation of angiogenesis


A post-doctoral fellowship is available within the Computational Mechanobiology Group at the Julius Wolff Institute (Charite Medical School in Berlin). This position is funded through a collaboration grant (Research Unit 2165: Regeneration in Aged Individuals) from the German Research Foundation (DFG) to study the mechanical regulation of sprouting angiogenesis during bone regeneration. Research goals are being addressed through a combination of in vitro/in vivo experimentation and computer modeling.

The successful candidate will have a strong background in one or more of the following areas: mechanics, bioinformatics, computational biology and/or computational mechanics. Strong programming and computer modelling skills are required. The position is available for two years with an option to renew provided that adequate progress is made and that the project funding is continued.

The work will be conducted in an interdisciplinary research environment composed of engineers, biologists and clinicians. As a postdoc you will be associated to the Berlin-Brandenburg School of Regenerative Therapies ( and benefit from the interaction with international scientists.


Interested candidates should submit their curriculum vitae and two references by August 31, 2018. Applications should be sent to: Prof. Sara Checa (

Postdoctoral researcher position McGill University

Position Title: Post-Doctoral Researcher
Hiring Unit: School of Communication Sciences and Disorders
Name of Immediate Supervisor: Nicole Li-Jessen
Location of Work: 8/F, 2001 McGill College Avenue, Montreal, Canada
Work Schedule: 35 hours/ week
Working Hours: 9 a.m. – 5 p.m. (work hours negotiable)
Planned Start Date & End Date:

(if applicable)

September 2018 (possibility of three years)
Salary Range:

(minimum as per collective agreement)

CAD $42,000 – $47,000 depending on experience and qualifications
Posting Period:

(start and end date of posting)

We are seeking a highly motivated junior-level postdoctoral researcher to join the Voice Research Laboratory at McGill University in Canada. This appointment is expected to begin in September 2018 (start date negotiable). The Voice Research Laboratory at McGill focuses on advancing personalized medicine in laryngology through the development of numerical simulations, wearable devices, non-invasive diagnostics and tissue engineering products. This is a unionized position   at McGill University.

The successful applicant will work on highly interdisciplinary research projects in computational biology and translational research. The primary duty of this position is to further develop existing agent-based models for vocal fold biomaterial design and tissue reconstruction. Additional training on wet lab skills, advance microscopy and tissue mechanics are available if the applicant is interested in.


A Ph.D. or equivalent degree in computational biology, biomedical engineering, or related quantitative scientific discipline is required by the time the appointment begins.

The applicant should have expertise and experience in multiscale computational modeling and analysis of biological systems. Skills in numerical simulations, e.g., development of agent-based models using C/C++ and/ or Matlab/Mathematica, experience in sensitivity analysis, model calibration and  verification, as well as implementation of mathematical descriptions of physical biological processes are required. Applicants with advanced computational training as well as knowledge of cellular biology and tissue biomechanics are preferred.

Proven track record in peer-reviewed publications in related fields is expected. Qualified candidates should be highly self-motivated and possess the ability to work independently, as well as in a multidisciplinary collaborative environment. Excellent interpersonal, organizational, and oral and written technical and scientific English communication skills are required.

The applicant will work closely with the team under direct supervision of Dr. Nicole Li-Jessen and with

our mechanical engineering and clinical collaborators at McGill University and other institutions in Canada and the United States. The applicant will have the opportunity to work on advanced, challenging research projects, primarily through development of predictive multiscale models in the field of vocal scarring and tissue engineering. If interested, the applicant can also lead or participate in relevant projects available in the lab.

Candidates are encouraged to apply by May 31, 2018. Applications will be reviewed until the position is

filled. Please send the application to Dr. Nicole Li-Jessen

  1. Cover letter
  2. Curriculum Vitae
  3. Research statement (1-page)
  4. Three references with contact information
  5. Publications if applicable

Postdoctoral position Bio-inspired 3D printing @ TU WIEN, Austria


3D printing has become a technology which has pervaded many application fields, having enabled the production of tiny structures with a hitherto unparalleled precision. One major drawback, however, seems to be left: mechanical integrity. Namely, the successively downlaid layers may entail inherent weaknesses. How to overcome this limitation? The present project funded by the Austrian Academy of Sciences and jointly realized by the University of Vienna and Vienna University of Technology (TU Wien) wishes to venture into this unknown territory; by targeting the mechanical secrets of the highly mechanically competent 3D printing systems employed by the large animal class of polychaetae or bristle worms. This class is still be discovered from a purely biological or genetical viewpoint, but in cooperation with world-class Vienna-based biologists, it is now the time for interdisciplinarily inclined engineering mechanicians with expertise in mechanical modeling of multiscale biological systems, to start, from a clear theoretical basis, a very first systematic experimental protocol which aims at understanding the chitin-made chaetae, or bristles, which are miracles in terms of geometrical and functional  diversity.

In this context, we announce a post-doc position for an excellent engineering mechanician (or closely related engineering scientists) who not only strives for new discoveries, but also shares the vision for combining and merging largely separated fields of research.

The post-doc position may start on June 1, 2018 for a duration of two years. The gross salary is € 3,711.10 per month.

Interested candidates should send a letter of application, curriculum vitae, and names and addresses of three references to Prof. Christian Hellmich,

Postdoctoral position at the Laboratory for Bone Biomechanics, ETH Zurich

Postdoctoral Position in Time-lapsed Imaging and Multiscale Modeling of Human Bone Fracture Healing

The aim of the research is to perform time-lapsed high-resolution CT imaging and multiscale modeling of distal radius bone fractures in patients and to investigate the in vivo healing process employing image processing and analysis. Bone fractures are very common and in 5-10% of the cases do not heal or are delayed. Nevertheless, factors influencing the healing outcome are not yet well understood. The specific aims of this 2-year project will therefore be (1) to perform high-resolution CT imaging in fracture patients and develop image analysis and registration methods to determine in vivo bone resorption and formation sites during fracture healing at the human distal radius, (2) to assess local bone remodeling and comparing the results with clinical biomarker measurements including whole bone strength through multiscale modeling approaches, and (3) to evaluate how bone remodeling during fracture healing affects whole bone strength in healthy, aged and osteoporotic humans.

The position will be based at the Inselspital Bern and at ETH Zurich. Furthermore, this project is embedded in a larger effort funded by the National Science Foundations of Switzerland, Germany, and Austria through a DACH consortium grant consisting of Ulm University (D), the Medical University Innsbruck (A), and the Inselspital Bern and ETH Zurich (CH). The overall goal of the consortium is to investigate local bone remodeling and mechanoregulation of bone fracture healing in healthy, aged, and osteoporotic humans.

The successful candidate holds or will soon receive a doctoral degree in Biomedical, Electrical or Mechanical Engineering, and has preferentially a background in imaging and image processing. It is essential that the candidate is willing and motivated to work at the interface between engineering and clinical research. Additionally, excellent communication skills in English (oral and written) are required and command of the German language is required for the clinical interactions.

We look forward to receiving your online application includinga a motivation letter, CV, university transcripts and names and contact details of two references. Please note that we exclusively accept applications submitted through our online application portal. Applications via email or postal services will not be considered.

For further information about the group please visit our website Questions regarding the position should be directed to Dr. Patrik Christen by email patrik.christen[at] (no applications).


Postdoctoral Research Associate in Skeletal Ageing and Biomechanics at Insigneo

Postdoctoral Research Associate in Skeletal Ageing and Biomechanics at Insigneo

Job Title:
Postdoctoral Research Associate in Skeletal Ageing and Biomechanics

A position has become available for a highly motivated postdoctoral research scientist to be involved with studies to determine the effects of geroprotectors on bone and joint ageing.
You will use ex vivo X-ray microCT and histomorphometry combined with new computational approaches for an in depth structural analysis of bone, bone strength, cartilage degradation and subchondral bone changes.
The post is funded by Biotechnology and Biological Sciences Research Council (BBSRC) and will be based at the Insigneo Institute for In silico Medicine and the MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA) in Sheffield.
You should hold a PhD in Engineering, Physics or related disciplines, be familiar with experimental, imaging, image processing and computational modelling techniques for assessment of bone properties. A willingness to learn histological techniques is also essential.
The post is fixed term until the end of December 2019, reporting to Dr Enrico Dall’Ara and Prof. Bellantuono

Start position: As soon as possible
Duration: until the end of December 2019
Closing application: 25th January 2018
Link Application (use in Keywords: “UOS018139):…ign=jobs-link#

Salary: Grade 7; £30,175 to £38,183 per annum


Postdoc position at TU/e – Mechanical Optimization of Scoliosis Treatment

Postdoc Mechanical Optimization of Scoliosis Treatment

The Eindhoven University of Technology (TU/e) has the following vacancy: Postdoctoral researcher – Mechanical Optimization of Scoliosis Treatment


Job description

About TU/e:

The TU/e is a University of Technology with a focus on Health, Energy and Mobility. Within the Health area, several departments cooperate on topics such as Chemical Biology, Regenerative Medicine, Computational Biology, and Biosensing, with close links to healthcare and industry. The TU/e is an open and inclusive university with short communication lines. The people are curious, collaborative, and strive for excellence. TU/e enables its academic staff to develop research and education at an internationally renowned level. Our lively campus community facilitates connections between staff and students, in an open, friendly, vibrant atmosphere that welcomes and inspires.

About BME:

The Department of Biomedical Engineering offers a research driven BME Bachelor program and Masters in Biomedical Engineering and Medical Engineering in its Graduate Program. Its research areas range from Molecular Bioengineering and Imaging, Biomechanics and Tissue Engineering to Biomedical Imaging and Modelling. The department has more than 800 students and up to 200 tenured and non-tenured employees.

About the Orthopaedic Biomechanics group:

This group combines the disciplines of engineering and biology to increase our knowledge of the adaptive, developmental and physiological nature of musculoskeletal tissues. This knowledge is then applied to explore and develop regenerative treatment strategies, currently applied to bone, articular cartilage, intervertebral disc and tendons/ligaments. The group consists of multi-disciplinary scientists and engineers at all levels employing numerical and experimental as well as engineering, imaging, biological and chemical techniques.

About InSciTe:

This position is part of the Chemelot Institute for Science & Technology (InSciTe), a public-private institute for developing smart healing biomedical materials for high quality, affordable healthcare. With its physical nucleus at Brightlands Chemelot Campus, it enables entrepreneurship, expertise, experimentation and education in an open innovation network. In this project, the founding partners, MUMC+, TU/e and DSM will work together with other partners to achieve their aim of bringing a new treatment for scoliosis to first-in-man trials.

Job description

In earlier work, the partners developed a new strategy for the treatment of scoliosis (an abnormal curvature of the spine) in growing children. With this strategy, ultra-high molecular weight polyethylene fibres are used in combination with metal rods to correct the spinal deformity. The number of levels to be treated, as well as the placement of fixation screw, however, are dependent on the severity of the deformation and other patient-specific factors. In order to optimize the design, a computer model is developed based on the finite element method. This model can represent the spine and the instrumentation and can be made to fit the patent by adjusting a limited number of parameters. The aim of the project is to develop this model into a pre-clinical and a patient-specific pre-operative tool to optimize the treatment. As these suggestions for optimization involve other parts of the project, there will be close interaction with the entire team.



Job requirements

We are accepting applications from enthusiastic candidates who are interested in a dynamic, stimulating and ambitious environment to perform their work. The candidate must have a PhD degree in biomedical engineering, mechanical engineering, physics or equivalent.

Candidates are expected to have good (bio)mechanical insight, extensive experience with (non-linear) finite element analyses (e.g. using MSC.Marc, Abaqus or Ansys), mechanical testing techniques, and interested in manufacturing and developing a product and establishing dedicated testing environments. The candidate will be able to effectively communicate scientific ideas, foster collaboration and have a capability for independent thinking. Moreover, the candidate should be able to work independently within a dynamic team and be skilled in written and spoken English.

Conditions of employment

We offer you:

  • An exciting job in a dynamic work environment
    • A full time appointment for 1 year by Eindhoven University of Technology ( After a good evaluation your contract can be extended with an additional year.
    • A gross monthly salary is in accordance with the Collective Labor Agreement of the Dutch Universities (scale 10 ), depending on your experience.
  • The possibility to present your work at international conferences.
  • An attractive package of fringe benefits, including end-of-year bonus (8,3% in December), an extra holiday allowance (8% in May), moving expenses and excellent sports facilities.



Information and application

Information and procedure

If you would like to apply, please send us your application by using the ‘apply now’ button on the TU/e website.

Your application should be addressed to dr. Bert van Rietbergen or prof.dr. Keita Ito, and must include:  a one-page personal motivation letter, a CV including the names and contact details of two recent references and a transcript of your masters studies. Only complete applications will be considered.

Screening of applicants will start as soon as applications are received and will continue until the position has been filled.

Online application:

Research Assistant (Postdoc) position @ University of Portsmouth in bone regeneration

The School of Engineering is seeking to appoint a research assistant (RA) to contribute to the project “Development of first in vitro protocol for bone formation from osteoregenerative biomaterials”, resulting from a collaborative effort between two research centres at the University of Portsmouth (Zeiss Global Centre: and Biomaterials and Drug Delivery:, one at the University of Southampton (Centre for Human Development, Stem Cells and Regeneration: and the  commercial partner CellScale (

The project aims to develop the first in vitro protocol for bone regeneration induced by osteoregenerative biomaterials. This will be achieved through investigation of the relationship between the mechanical characteristics of the employed biomaterials and their ability to produce new bone in a biological environment. The research will provide a better understanding of bone formation when simulated physiological loading is applied, resulting in the development of optimised bone repair materials. In addition, correlative imaging combining confocal microscopy, x-ray microscopy and mechanical testing will ensure in-depth knowledge of the entire transition from cell activity to regenerated bone quality. Overall, the project will provide an initial platform aiming at substituting animal studies in the next future and representing a breakthrough methodological tool for the development of new bone treatments.

The successful candidate should have a strong background in at least two of the following areas: bioengineering, mechanobiology, x-ray/confocal microscopy, mechanical testing and biomaterial formulation. The RA will work in a dynamic environment and benefit from the existing collaborative research between partners.

The post is based at the School of Engineering, University of Portsmouth, with the appointment effective from 2nd January 2018, or as soon as possible after offer. For informal enquiries about the project please contact Dr Gianluca Tozzi at or phone +44 (0)23 9284 2514.

Applications should be submitted via the online application system at by the closing date. It is the policy of the University to only accept applications submitted using the University’s online application system.

We welcome applications from all qualified applicants, but applications are particularly encouraged from traditionally under-represented groups in science and engineering. The University of Portsmouth holds an Athena Swan bronze award and is committed to introduce organisational and cultural practices that promote gender equality and create a better working environment for men and women.

For detailed information about the vacancy, please select this link:ZZ004184 – Research Assistant.docx

Postdoctoral Research Associate in Bone and Joint Biomechanics, Sheffield, UK

Job Title:
Postdoctoral Research Associate in Bone and Joint Biomechanics

A PostDoc position for a highly motivated research scientist to work on a study
funded by the National Centre for Replacement, Refinement and Reduction
of the usage of animals in research (NC3Rs).
The project aims to enhance the assessment of bone and joint properties in
preclinical studies (mouse models), by combining longitudinal high-resolution
imaging, advanced image processing and computational modelling to non-
invasively measure bone strength from the in vivo images. In this project the
post-holder will create and validate computational models for the prediction of
bone strength at each time point in mice scanned with in vivo microCT that allows for high-resolution scans of the mice tibia. Moreover, the post-holder will adapt our protocols to study in details bone changes in the mouse knee to evaluate the effect of OA. Finally, they will be involved in the design and creation of an online service that measures automatically the bone properties in different portions of the tibia and that can be used worldwide by other researchers.
The post will be based at the Insigneo Institute for In silico Medicine and the
Mellanby Centre for Bone Research in Sheffield. Applicants should hold a PhD in
Engineering, Physics or related disciplines (or being close to submit), be familiar
with experimental, imaging, image processing and computational modelling
techniques for assessment of bone properties. Willingness to use the developed
skills towards the 3Rs is essential. The post is full time for 30 months. The post
holder will report to Dr Enrico Dall’Ara.

Start position: 1 st Dec 2017
Duration: 30 months
Closing application: 24 th October 2017

Link Application (use in Keywords: “UOS017290”):

Salary: Grade 7; £30,175 to £38,183 per annum

PDRA in Bioreactor Technology, University of Oxford

We are seeking a full-time Postdoctoral Research Assistant to join the Oxford Mechanobiology Group at the Department of Engineering Science, University of Oxford. We have developed and filed a patent on an electromagnetically actuated mechanical bioreactor for studying cultured tissue, and have won impact funding to commercialize this concept with applications in tissue engineering, drug discovery and research instruments. You will be responsible for design and development of miniaturized single and multi-chamber commercial demonstrators of the technology and will need extensive experience of practical project work in electromagnetic actuation, a strong interest in applications in bioreactor technology, and a passion for commercialization.

Click here for further details