Category Archives: PhD/Master student positions

PhD Project – Luxembourg / Synopsys Inc Exeter, England, United Kingdom

Job description

Synopsys NE Ltd (https://www.synopsys.com/simpleware.html) invites applications for an Early Stage Researcher position (Doctoral Candidate) as part of the Rapid Biomechanics and Simulation for Personalized Clinical Design (RAINBOW) MCSA European Training Network. RAINBOW is funded under the European Union’s Horizon 2020 research and innovation program.

The post holder will be employed on a fixed term (36-month contract) and be principally based at the Synopsys-Simpleware offices in Exeter UK but will also be enrolled as a full time graduate student at the University of Luxembourg (https://wwwen.uni.lu/) undertaking research towards a PhD degree award. The candidate will be expected to spend periods of time in Luxembourg as well as with other partners in the consortium.

The post holder will develop numerical methods to simulate the deformations of soft-tissues in the context of computer-aided surgery. In particular, he/she will contribute to bridging the gap between advanced 3D imaging techniques and physics-based computer simulations in order to improve current capabilities in the area of computer-aided diagnostic and surgical planning. A thorough knowledge of software development is essential.

This is a full time (37.5 hours per week) position on a fixed term basis for a fixed-term of 36 months.
See https://www.linkedin.com/jobs/view/755834914/ for further details.

PhD: mechanics of a synthetic elastic protein and effects on arterial function @ Lyon

Doctoral thesis at the Center for Biomedical and Healthcare Engineering

Mines Saint-Etienne – SAINBIOSE (INSERM-U1059) – Université de Lyon (France)

 

Mechanical characterization and modeling of a synthetic elastic protein and its effects on the arterial function

 

Keywordsbiomechanics, multiscale models, homogenization, elastin, mechanical characterization, tissue engineering.

 

Scientific context: Elastin is the main elasticity provider for several soft tissues (such as dermis, arteries, pulmonary alveoli) in its fibrous form and a signaling molecule in cell/extracellular matrix interaction. Elastin-rich elastic fibers allow the large artery walls to transform the pulsatile blood flow ejected by the heart into a continuous blood flow in the peripheral arteries (Windkessel effect). Dysfunctions are highly correlated with diseases such as artery stenosis, aneurysm, hypertension or cardiac hypertrophy, which have strong repercussions on arterial biomechanics and can threaten the vessel integrity.

Setting aside surgery, there is currently no treatment for preventing, blocking or treating any loss of elasticity. It therefore appears, from a biomechanical point of view, that the introduction of an entity that provides elasticity within the arterial wall would be the most trivial action to stop arterial stiffening, but remains currently limited due to chemo-biological issues. The Arterylastic project, to which the thesis is linked, proposes to unlock this technological barrier using an original synthetic elastic protein (SEP) recently developed with a synthetic backbone devoted to skin engineering.

 

Academic contextAs previously mentioned, the thesis takes place in a larger project named Arterylastic, funded by ANR, combining pluridisciplinary approaches of three laboratories in France: LBTI – the Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (UMR5305 CNRS/UCBL1 Lyon), HP2 –Hypoxie Physiopathologie Cardiovasculaire et Respiratoire (INSERM U1042 – University Grenoble Alpes) and Sainbiose (within the Center for Biomedical and Healthcare Engineering CISSAINBIOSE/INSERM U1059 – Mines Saint-Etienne). The PhD student will work at CIS, which also conducts major international research projects in the field of soft tissue biomechanics, in particular aortic aneurysms. He will collaborate with other researchers involved in ERC projects (https://www.mines-stetienne.fr/en/author/avril/, https://www.emse.fr/~badel/).

 

ObjectivesThe objective is to restore (or at least improve) arterial function and mechanical properties under conditions of elastic fibers injury. The objective will be reached if the SEP is correctly integrated into elastic fibers and if the SEP restores arterial wall elasticity and/or physiological parameters in relevant animal models. In this thesis, we will evaluate the mechanical behavior of the cross-linked SEP and of arterial samples from treated mouse models and a numerical model will be developed from experimental data to better predict treatment parameters.

The main tasks will be:

  1. Experimental tests will be carried out for characterizing the macroscopic mechanical properties of the SEP and of arteries treated with the SEP. The cross-linked SEP will be characterized using tensile tests with a customized device. Mechanical parameters of treated arteries will be assessed by measuring pressure-diameter curves from mouse arteries tested in a customized tension-inflation test.
  2. A multiscale numerical model of the mechanical behavior of arteries will be elaborated, taking into account their microstructural composition and morphology (bilayer, specific contributions of elastin, collagen, smooth muscle cells, possible proteoglycans) and including the effects of possible grafting of the SEP to the arterial wall. The model will be tested for arteries with competent elastic fibers, for arteries with damaged elastin and induced-tissue remodelling, and for arteries treated with the SEP.
  3. The experimental results obtained at task 1 will be used to evaluate and calibrate the prediction ability of the numerical model developed in task 2. Sensitivity analysis permitting to find the optimal treatment conditions with the SEP for different types of therapeutic targets will be addressed.

 

Candidate profileCandidates with strong skills in mechanics (modeling and experimental) and biomechanics are expected. Motivation and interest in bioengineering applications is recommended.

 

How to apply:Send CV, cover letter and letters of recommendation to claire.morin@emse.fr and avril@emse.fr.

PhD in Platelet Biomechanics @ University Medicine Greifswald

Position

One PhD position is available at University Medicine Greifswald, Greifswald, Germany within the newly funded Deutsche Forschungsgemeinschaft (DFG) Transregional Collaborative Research Center (SFB / TR 240) “Platelets – Molecular, Cellular and Systemic Functions under Physiological and Pathological Conditions”. The project will start in July 2018 and runs until June 2022. Salary is based on TV-L (E-13, 65%).

Project Description

The selected candidate will investigate the ‘Role of the Platelet Cytoskeleton in Platelet Biomechanics’. Briefly, circulating platelets are essential players in haemostasis and thrombosis. Interestingly, mutations in several genes of cytoskeletal-regulatory proteins have been identified to cause inherited thrombocytopenia. However, how defects in cytoskeletal-regulatory proteins affect biomechanical properties of platelets and how translates into increased risk of bleeding are only poorly explored. The PhD candidate will have access to relevant disease models and innovative biophysical tools to quantitatively describe the underlying ‘biophysical’ and ‘biomechanical’ aspects of platelet cytoskeleton-associated defects in platelet function.Selected candidate will have access to cutting-edge scientific infrastructure, highly innovative projects in an excellent scientific environment and opportunities to collaborate with national and international research groups.

Our profile

We are an interdisciplinary team consisting of bioengineers, biophysicists and platelet biologists. The PhD candidate will be based in the Department of Transfusion Medicine, University Medicine Greifswald (supervised by Dr. Raghavendra Palankar) and will closely collaborate with Dr. Oliver Otto (Group Leader-Biomechanics, ZI HIKE, Greifswald) and Dr. Markus Bender (Group Leader-Megakaryocyte and Platelet, Department of Experimental Biomedicine, University Würzburg).

Your profile

Candidates with a Diploma/Master degree in Natural Sciences (Biology/Bio-Technology/Chemistry/Physics) career interest in biophysics are encouraged to apply. Ideally, the candidate has high interest in cellular biomechanics. The project requires previous experience in at least one or more of the following skills: force spectroscopy, microfluidics, quantitative imaging, MATLAB /Mathematica/COMSOL Multiphysics, data analysis skills and handling of microscopes. Scientific communication skills in English are necessary.Disabled applicants will be preferentially considered in case of equivalent qualification. The University Medicine Greifswald seeks to increase the number of women and therefore explicitly encourages them to apply.

Application

Interested candidates should send their application until August 15th, 2018 including curriculum vitae (max. two pages), one page description of past research experience and contact details of two references to palankarr@uni-greifswald.de preferably as a signle PDF file in an email attachment.

PhD Positions in 3D Bioprinting and Multiscale Modeling of Personalized Bone Organoids @ETHZ

The Laboratory for Bone Biomechanics headed by Prof. Ralph Müller at the Department of Health Sciences & Technology, Institute for Biomechanics at ETH Zurich is offering
PhD Positions in 3D Bioprinting and Multiscale Modeling of Personalized Bone Organoids
The aim of the research is to develop a human-based 3D bioprinted bone organoid model that mimics tissue remodeling of healthy or osteogenesis imperfecta (OI) individuals and to investigate OI pathomechanisms. One of the major challenges in OI patients today is to diminish the risk of bone fractures. OI is a genetically heterogeneous inherited disorder of bone matrix formation and remodeling, characterized by pain and recurrent fractures, impairment in ambulation, short stature and multiple skeletal complications. Currently, there are no pharmacological interventions available that effectively treat or prevent fractures or limb deformities. Animal and in vitro experimental models used as test beds for new pharmacological/implants interventions do not allow a deep understanding of pathomechanisms behind the disease. To facilitate a better approximation to the in vivo situation in humans, in this project, we aim at the development of personalized 3D-bioprinted bone organoids for genetically distinct forms of osteogenesis imperfecta to investigate i) the pathophysiology and the biomechanics of OI bone and ii) the bone fracture repair process in order to find novel treatments for personalized bone repair in OI patients. In addition, computational models can assist in the elucidation of the effects of pharmacological treatments and studying the biological complexity quantitatively while reducing simultaneously time and costs compared to animal studies. The positions will be based at ETH Zurich in close collaboration with the University’s Children Hospital in Zurich. The overall goal of the project is to improve the clinical care for patients affected by osteogenesis imperfecta and provide individualized, evidence-based therapy, rehabilitation, and surgical interventions.
For this highly interdisciplinary project, we currently offer two PhD positions enrolled in the graduate program at ETH Zurich. The successful candidate for the experimental part of the project will hold a master’s degree in Biology, Health Sciences and Technology, Life Sciences or similar field. The candidate should have a strong background in cell and molecular biology. Knowledge in 3D-bioprinting and tissue engineering is advantageous but not required. The successful candidate for the computational part of the project will hold a master’s degree in Computational Sciences, Interdisciplinary Sciences, Electrical, Chemical or Mechanical Engineering or similar field and has preferentially a background in imaging, image processing and computational modeling. Knowledge in computer programing (preferentially Python) is advantageous but not required. It is essential that candidates are willing and motivated to work at the interface between biological, engineering and clinical research. Additionally, excellent communication skills in English (oral and written) are required. Knowledge of German is advantageous for the clinical interactions but not absolutely required.

We are looking forward to receiving your online application including a motivation letter, CV, full university transcripts and names and contact details of two references. Please note that we exclusively accept applications submitted through our online application portal. Applications via email or postal services will not be considered.For further information please contact Dr. Marina Rubert at marina.rubert@hest.ethz.ch (no application documents) or visit our group website www.bone.ethz.ch.

Apply now

Six Marie Skłodowska-Curie Early Stage Researcher Positions (UK, IT, HU, FR, DE)

Six Marie Skłodowska-Curie Early Stage Researcher Positions

SPINNER (SPINe: Numerical and Experimental Repair strategies) is a Marie Skłodowska-Curie Actions (MSCA) Innovative Training Networks (ITN) European Industrial Doctorate (EID) aimed at improving treatments for spine disorders.

SPINNER is recruiting a group of six Bioengineering early stage researchers (ESRs) to be in a position to design the next generation of repair materials and techniques for spine surgery. The project brings together partners from the biomaterials, implantable devices, and computational modelling industries with orthopaedic clinicians and academic experts in cell, tissue and organ scale biomaterials and medical device testing. All projects will be fully grounded in practical industrial and clinical requirements, where the number of patients requiring complex spine surgery is rapidly expanding, and the biomedical engineering industry needs suitably trained, innovators to produce economic solutions to support healthy ageing for the people of Europe.

SPINNER is an academic/ clinical/ industrial partnership and the ESRs will be expected to interact with several partners during their three years of research. The partners are:

For more information, please visit www.spinner-eid.eu.
The ESRs will be recruited for 36 months and be enrolled onto a PhD programme at one of the academic partner institutions. They will expect to spend at least 18 months at a non-academic partner institution.

Early Stage Researcher (ESR) Projects

ESR1: Osteoinductive injectable/ mouldable bone graft substitute for spine repair

Start Date: 01-September-2018
Host institution: University of Sheffield, UK
This ESR will join Insigneo the institute for in silico medicine and will be affiliated with the Department of Materials Science and Engineering.
Industrial Secondment: Finceramica, Italy

Objectives: Development of multisubstituted hydroxyapatite (SrMgHA) to manufacture orthopaedic cements and putties for enhanced bone regeneration in spinal fusion.

Required Skills: This ESR should have or be close to obtaining an Undergraduate degree in Bioengineering, Mechanical Engineering, Materials Science, Chemistry or a related discipline. Basic knowledge of biomaterials, regenerative medicine, processing of ceramic nanoparticles, chemical/physical characterisation of biomaterials, statistical methods and experience of cell culture is desirable. Chemical laboratory experience is required. The ESR should show highly collaborative attitude, excellent written and verbal communication skills.

Acquired skills: This ESR will specialise in hydroxyapatite based regenerative materials. The project will enable the ESR to develop research and technical skills on physico/chemical characterisation of biomaterials (for example, thermogravimetric analysis (TGA), morphological evaluation by SEM, ICP spectrometry, enzymatic degradation test, mechanical testing), materials characterisation techniques (for example, mechanical testing and elemental analysis), basic knowledge on in vitro biological testing to assess the capability of the material to drive bone regeneration, and basic knowledge about organ-level biomechanical testing.

Employability: the profile of this ESR will make him/her employable at medical device companies active in the development and production of synthetic bone graft for bone regeneration in orthopaedic, dental or maxillofacial surgery.

Informal enquiries: Gwen Reilly (g.reilly@sheffield.ac.uk) or Elisa Figallo (efigallo@finceramica.it).

Applications for this position will also need to complete the University of Sheffield’s application procedure, which can be found at: https://tinyurl.com/y85xyj7r.

ESR2: Development of osteoinductive coatings for spinal implants (fusion cages)

Start Date: 01-September-2018
Host institution: University of Sheffield, UK
This ESR will join Insigneo the institute for in silico medicine and will be affiliated with the Department of Materials Science and Engineering.
Industrial Secondment: Finceramica, Italy

Objectives: To develop an osteoinductive coating for cages used in spinal fusion, through exploring the antibacterial properties of multisubstituted apatite.

Required Skills: This ESR should have or be close to obtaining an Undergraduate degree in Bioengineering, Mechanical Engineering, Materials Science, Chemistry or a related discipline. Basic knowledge of ceramic biomaterials and processing, methodologies for chemical/physical characterisation of biomaterials, statistical methods and experience of cell culture is desirable. Chemical laboratory experience is required. The ESR should show highly collaborative attitude, excellent written and verbal communication skills.

Acquired skills: this ESR will specialise in hydroxyapatite based regenerative materials and devices for orthopaedic application. The ESR will have the opportunity to develop research and technical skills in biological (cell viability) and physico/chemical characterisation of biomaterials (for example, thermogravimetric analysis (TGA), morphological evaluation by SEM, ICP spectrometry, enzymatic degradation test, mechanical testing), materials characterisation techniques (for example, mechanical testing and elemental analysis) and basic knowledge of in vitro biological testing. Training will include assessment of mechanical competence at different scales, also in relation to revision of joint replacement. The ESR will acquire project management, communication and analytical skills by working in close collaboration with different steps in product development (production, quality assurance/regulatory, marketing) as described by design control principles.

Employability: the profile of this ESR will make him/her employable at medical device companies developing or commercialising class III products for tissue regeneration particularly in the orthopaedic field.

Informal enquiries: Fred Claeyssens (f.claeyssens@sheffield.ac.uk) or Elisa Figallo (efigallo@finceramica.it).

Applications for this position will also need to complete the University of Sheffield’s application procedure, which can be found at: https://tinyurl.com/y85xyj7r.

ESR3: Integration of clinical experience and in vitro biomechanical testing to improve spinal augmentation

Start Date: 01-November-2018
Host institution: University of Bologna, Italy
This ESR will join the PhD program Health and Technology, an interdisciplinary collaboration bridging the medical and the engineering departments of the University of Bologna, and will be affiliated with the Department of Industrial Engineering.
Industrial Secondment: National Center for Spinal Disorders, Hungary

Objectives: To develop understanding of the failure mechanism of augmented spine segments, focusing both on the vertebrae subjected to vertebroplasty, and adjacent ones.

Required Skills: This ESR should have or be close to obtaining (by 31 July 2018) a degree in Mechanical Engineering, Bioengineering, Materials Science, or a related discipline.  Only applicants with a University degree that would allow them to join a PhD program in Italy or in UK can apply, i.e. a University Degree of 3+1 or 3+2 years, or a similar combined degree consisting of a Bachelor followed by a Master corresponding to a total of 4 or more years of legal duration, or a single degree of 4 of more years can apply for admission. Knowledge of biomechanics, orthopaedics and mechanics of materials and structures is essential.  Additionally, experience in mechanical testing, biomaterials, and with clinical environments desirable.

Acquired skills: This ESR will specialise on the problems related to vertebroplasty, kyphoplasty and vertebral augmentation. During the first phase, the ESR will become familiar with the clinical environment, and learn the clinical problems related to vertebroplasty. This will include patients with osteoporotic fractures and metastatic lesions. During the second phase, the ESR will learn (in synergy with ESR3) how to develop dedicated biomechanical testing with a focus on vertebroplastic technique.

Employability: The expertise that this ESR will gain will make him/her employable in industries developing regenerative materials, and in test labs.

Informal enquiries: Luca Cristofolini (luca.cristofolini@unibo.it) or Áron Lazáry (aron.lazary@bhc.hu).

ESR4: Sagittal stability: movement analysis before and patient motion after spinal treatments

Start Date: 01-November-2018
Host institution: University of Bologna, Italy
This ESR will join the PhD program Health and Technology, an interdisciplinary collaboration bridging the medical and the engineering departments of the University of Bologna, and will be affiliated with the Department of Industrial Engineering.
Industrial Secondment: National Center for Spinal Disorders, Hungary
Objectives: To develop a comprehensive approach to spinal balance and more in general to spine biomechanics.

Required Skills: This ESR should have or be close to obtaining  (by 31 July 2018) a degree in Bioengineering, Mechanical Engineering, or a related discipline. Only applicants with a University degree that would allow them to join a PhD program in Italy or in UK can apply, i.e. a University Degree of 3+1 or 3+2 years, or a similar combined degree consisting of a Bachelor followed by a Master corresponding to a total of 4 or more years of legal duration, or a single degree of 4 of more years can apply for admission.  Knowledge of biomechanics, orthopaedics and imaging is essential.  Additionally, experience in mechanical testing, numerical modelling, and with clinical environments desirable. anical testing, numerical modelling, and with clinical environments desirable.

Acquired skills: This ESR will gain a comprehensive understanding of the issues related to spinal balance. He/she will get familiar with in vivo methods to assess patients before and after spinal corrections (including imaging and movement analysis), modelling methods to investigate sagittal balance, and in vitro biomechanical tests (in synergy with ESR 3). In the last phase, he/she will familiarise with mechanical testing and experimental stress analysis.

Employability: The profile of this ESR will make him employable by companies manufacturing spine correction devices, but also in clinical centres for movement analysis.

Informal enquiries: Luca Cristofolini (luca.cristofolini@unibo.it) or Áron Lazáry (aron.lazary@bhc.hu).

ESR5: Modelling spinal surgical procedures

Start Date: 01-September-2018
Host Institution: Ansys, France
Academic Institution: University of Sheffield, UK
Objectives: Development of a personalised finite element model of the lumbar spine to simulate spinal repair systems.

Required Skills: This ESR should have or be close to obtaining an Undergraduate degree in Bioengineering, Mechanical Engineering or a related discipline. Knowledge of finite element modelling and scripting is essential. Knowledge of medical images and image processing is desirable.

Acquired skills: This ESR will specialise in in silico modelling of the spine. The project will give the ESR the opportunity to acquire high skills in computational modelling, in particular in the modelling of the many different tissues that compose the spine. The ESR will acquire knowledge of the multi-scale anatomy and biomechanics of the spine, and the different orthopaedic interventions available (interspinous implant concepts). In addition, the ESR will get a very complete experience in in vitro testing, and integration of experimental and numerical methods.

Employability: This program will enable the trainee to be employable in any orthopaedic company that requires a good understanding of the biomechanics and the effect of medical devices on the body. In addition, the extensive experience in computational modelling will enable the trainee to work in companies requiring expertise in finite element modelling.

Informal enquiries: Michel Rochette (michel.rochette@ansys.com) or Enrico Dall’Ara (e.dallara@sheffield.ac.uk).

ESR6: Statistical shape modelling and reduced order modelling techniques for patient-specific models

Start Date: 01-September-2018
Host Institution: ADAGOS, France
Academic Institution: University of Sheffield, UK

Objectives: The goal is to design a procedure that creates a patient specific in silico model of the spine. This model shall evolve and adapt depending on the real time action of the clinician during the clinical procedure. At each surgical step, the in silico model will test several scenarios and propose to the clinician the best placement of implants. Each possible scenario of implants configuration and order of their placement can be modelled by finite elements model. When the operation is oriented on an individual patient and not on average spinal column, the approach based on resolution of a complete model becomes too computationally expensive, because multiple configurations have to be tested in order to find the optimal one. As a consequence, this approach cannot be efficiently introduced into medical practice. Recently, the AI solutions have proven to be of great interest for medical applications. The main goal of the future ESR will be the introduction of the reduced order model based on machine learning techniques. Both the real medical data and the results of the finite elements analysis will be used for training of this model.

Required Skills: This ESR should have or be close to obtaining a minimum undergraduate Honours degree (UK 2:1 or better) or MSc (Merit or Distinction) in Engineering, Mathematics, Statistics, Signal Processing, or a related discipline. Knowledge of modelling and simulation is essential. Knowledge of deep learning, artificial intelligent and image processing is desirable.

Acquired skills: The ESR will obtain very strong fundamentals on the deep learning techniques and their applications in biomedical studies, GPU computing.

Employability: The ESR will receive a strong background in deep learning applied to biomechanics and therefore companies requiring modelling expertise in the orthopaedic sector or in the biomedical engineering field, or any other engineering field will be interested in such profile.

Informal enquiries: Kateryna Bashtova (kateryna.bashtova@adagos.com) or Lingzhong Guo (l.guo@sheffield.ac.uk).

Eligibility Criteria

The following eligibility criteria apply for these positions:

  • Mobility: To be eligible for a position, you must not have resided in the same country as the host institution for more than 12 months over the three years leading up to the start date of the position, excluding holidays and (refugee status) asylum application.
  • Early Stage Researcher: An Early Stage Researcher (ESR) shall at the time of recruitment by the host organisation, be in the first four years (full-time equivalent research experience) of their research careers and have not been awarded a doctoral degree.

For general informal enquires about the SPINNER project and the six positions please contact: Gwen Reilly (g.reilly@sheffield.ac.uk) or Luca Cristofolini (luca.cristofolini@unibo.it).

Language Requirements

ESR1, ESR2, ESR5 and ESR6 will need to fulfil the Universities of Sheffield’s English language requirements for PhD registration, which are International English Language Test System (IELTS) 6.5 Overall, with a minimum of 6 in each category. The only exception to this is where your previous degree was in a native English speaking country, no more than five years ago.

For more information please see https://www.sheffield.ac.uk/postgraduate/info/englang.

ESR3 and ESR4 do not have an Italian language requirement, the working language of the laboratory is English. Reasonable English is required, which will be assessed at interview.

Benefits

The MSCA programme offers highly competitive and attractive salary and working conditions. The successful candidates will receive a salary in accordance with the MSCA regulations for early stage researchers. Exact salary will be confirmed upon appointment [Living Allowance = 3,700 euro/year (correction factor to be applied per country) + Monthly mobility allowance = 600 to 850 euro depending on the family situation]. In addition to their individual scientific projects, all ESRs will benefit from further continuing education, which includes internships and secondments, a variety of training modules as well as transferable skills courses and active participation in workshops and conferences. The approximate gross salary stated above is subject to employers statutory deductions and the amount varies according to the living costs of the host country.

PhD fees will be covered by the project grant.

Overseas (non-EU) applicants

Overseas applicants are welcome, please indicate if you require the host institution to sponsor your work visa.

Application

Please complete the application form, and upload a one-page application letter and a three-page curriculum vitae as PDF files, where requested within the form. The deadline for applications is Tuesday, 15th May 2018.

Applications for ESR1 and ESR2 will also have to complete the University of Sheffield’s application process, which can be found at: https://tinyurl.com/y85xyj7r.

Please note it is only necessary to apply for ONE single ESR position, only one application per person will be considered during the shortlisting process. If you are interested in a second position, please state this in the form and in your application letter.

PhD position scaffold characterisation, Miguel Hernandez University, Elche (Alicante) SPAIN

University: Bioengineering Institute. Miguel Hernandez University, Elche (Alicante) SPAIN
Requirements for candidates:
a) Be in possession of a University Degree of Bachelor, Engineer, Architect, University Graduate with at least 300 ECTS credits or Master’s Degree, or equivalent in your country, by a non-Spanish institution, in the scientific field that corresponds to the project of research to which your contract will be linked, and having completed those studies after January 1, 2014.
b) Knowledge of Spanish or English, at the conversation level, suitable
for the development of the research work. (B1 English and/or Spanish certificate, depending on nationality)
Research project: Synthesis, characterization and biocompatibility of scaffolds made with third generation ceramic materials
Salary Monthly remuneration of 1,479.28€; and the 25.02% social security
fee, 370.12€ (12 payments). An additional provision of 1,600€ is included, destined to travel expenses and establishment in Elche-Alicante-Spain of the person hired.
Duration: The predoctoral contract will be formalized for one year; renewable up to 3 (Contract start date will be July 1, 2018).
More information: Piedad De Aza (piedad@umh.es) subject: Santiago Grisolia.

PhD position in Marseille, France: Ultrasound stimulation of bone regeneration

Supervisor: Cécile Baron
contact: cecile.baron@univ-amu.fr
Institut des Sciences du Mouvement UMR 7287 CNRS – AMU Web site : http://www.ism.univmed.fr/baron

Co-Supervisor: Carine Guivier-Curien
contact : carine.guivier@univ-amu.fr
Institut de Recherche sur les Phénomènes Hors Equilibre UMR 7342 CNRS – AMU Web site: https://www.irphe.fr/~guivier

Bone is a living material capable of regenerating to adapt itself to the mechanical stresses of its environment through

the process of bone (re)modelling. Unfortunately, despite its amazing healing capacity, 5 to 10% of fractures show

delayed or non-union fractures.

Who doesn’t know anyone who has suffered a bone fracture? The causes of a bone fracture can be very different in nature: trauma, stress (fatigue fracture), idiopathic or congenital bone diseases and disorders, bone metastases, therapeutic treatments such as prostheses implant, bone lengthening or tumor resection. Although the field of bone regeneration has made great advances in recent decades, coupling personalized diagnosis and optimal treatment of bone fracture remains a challenge due to the large number of variables to be taken into account. In-silico models can help to better understand this complexity and thus improve the understanding of bone regeneration processes.

Ultrasound in medical applications is best known for diagnostic devices such as B-mode imaging. The advantages of ultrasound imaging compared to conventional medical imaging modalities such as X-ray or MRI are numerous: non-invasive, non-destructive, non-irradiating, non-ionizing, low-cost and portable devices that can be used at the bedside. These characteristics take on a particular resonance in the case of pediatric care. But ultrasound can also be a therapeutic vector.

Ultrasound stimulation of bone regeneration (USBR), initially controversial, is now recognized by the scientific and medical communities. The first clinical observation of the effect of ultrasound on bone healing was reported in the 1950s (Corradi and Cozzolino, 1953). Since the 1980s, USBR has contributed to a number of scientific publications: cell culture (Fung 2014; Puts 2016), animal model (Duarte 1983, Pilla 1990, Azuma 2001), clinical study (Malizos 2006), which has aroused controversy and today has a consensus in its favour. In 1994, the Food and Drug Administration approved the use of ultrasound stimulation in medical and paramedical fracture treatment protocols, and a device based on this principle is sold by Bioventus (Exogen®). However, the underlying multiphysical processes remain poorly understood (Padilla 2014).

In parallel with studies that focus on understanding biological processes in response to USBR (from cell to organ), there are many works on bone mechanotransduction. Mechanotransduction is the translation of a mechanical stimulus into a biological response. The mechanotransduction of bone associated with bone repair is complex, multi- scale and multi-physics. The impossibility of conducting in-vivo experiments reinforces the need to develop

theoretical and numerical models such as the one described in this project.

The project proposes to create a bridge between these two communities, that of mechanics and that of biologists and

clinicians by developing a finite element (FE) numerical model under Comsol Multiphysics simulating the ultrasound stimulation of a human bone in a configuration close to the in-vivo configuration. Bone is a multi- component, multi-scale tissue and interaction with ultrasound requires a “tissue to cell” model.

The thesis work is divided into 2 issues:

  1. – Morphometric and physical characterization of double cortical porosity – The bone is considered here as a medium with 2 porosity levels: vascular (Ø~100 µm) and lacuno-canalicular (Ø~100nm – 10 µm). One of the key parameters of Biot modeling is the permeability of the poroelastic medium. To date, the experimental measurement of the permeability of the lacuno-canalicular network (LCN) is inaccessible. Therefore, LCN permeability is estimated by theoretical or experimental approaches coupled with numerical/analytical models and ranges from 10- 17 to 10-25 m2 (Cardoso 2013).

Recent advances in X-ray imaging provide a better estimate of LCN morphometry in 3D giving access to a realistic estimate of the flow. Thanks to these investigation ways, the aim is to assess LCN permeability of the cortical bone which will feed the digital model.

  1. – Estimation of the mechanical effects induced by ultrasound (US) on bone cells – This part of the study concerns 2 scales and several physics using an FE model (Comsol Multiphysics). Ultrasound stimulation is generated at the bone tissue level considered as a poroelastic medium and the study target is the biological response pilot bone cell, at the microscopic scale.

A better understanding of the US stimulation mechanisms on bone remodeling makes it possible to envisage various applications: aid in the treatment of fractures, optimization of callotasis treatment (bone elongation), treatment of bone metastases, aid in peri-prosthetic healing, etc.

References

Azuma Y. et al. 2001, Journal of Bone and Mineral Research 16 : 671–680.

Cardoso, L. et al., 2013. Journal of Biomechanics, Special Issue: Biofluid Mechanics, 46: 253–65. Corradi, C., Cozzolino, A., 1953. Archivio di Ortopedia 66 (1), 77–98.

Duarte, L. R., 1983. Archives of Orthopaedic and Traumatic Surgery 101: 153–59. Fung, C-H et al. 2014. Ultrasonics 54: 1358–65.

Malizos, K. et al. 2006.  Injury 37 (1, Supplement): S56–62. Padilla, F. et al., 2014.  Ultrasonics 54 (5): 1125–45.

Pilla, A.A. et al. 1990.  Journal of Orthopaedic Trauma 4 : 246–253.

Puts, R., et al. 2016. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 63 (1): 91–100.

Candidate Profil

The candidate will have a solid background in fluid and solid mechanics and numerical modelling skills. Knowledge in biomechanics and/or acoustics will be a bonus. The proposed topic is an open and exciting one that requires tenacity and initiative.

Applications

Applications will be sent by e-mail to Cécile Baron (cecile.baron@univ-amu.fr) and Carine Guivier-Curien (carine.guivier@univ-amu.fr) and will include M2 transcripts, a CV, a letter of motivation and any letters of recommendation.

This thesis is proposed in the framework of the inter-ED AMU call for projects (https://college-doctoral.univ-amu.fr/fr/appel- a-projet-inter-ed). The results of the awarding of the 6 doctoral contracts will be notified at the beginning of June following the

hearings of the 12 pre-selected projects.

PhD position Laboratory for Bone Biomechanics, ETH Zurich

PhD Position in Time-lapsed Imaging and Multiscale Modeling of Human Bone Fracture Healing

The aim of the research is to perform time-lapsed high-resolution CT imaging and multiscale modeling of distal radius bone fractures in patients and to investigate the in vivo healing process employing image processing and analysis. Bone fractures are very common and in 5-10% of the cases do not heal or are delayed. Nevertheless, factors influencing the healing outcome are not yet well understood. The specific aims of this PhD project will therefore be (1) to develop image analysis and registration methods to determine in vivo bone resorption and formation sites during fracture healing at the human distal radius, (2) to assess local bone remodeling and comparing the results with clinical biomarker measurements including whole bone strength through multiscale modeling approaches, and (3) to evaluate how bone remodeling during fracture healing affects whole bone strength in healthy, aged and osteoporotic humans.

The position will be based at the Inselspital Bern and at ETH Zurich, where the candidate will be enrolled in the Doctorate Program. Furthermore, this PhD project is embedded in a larger effort funded by the National Science Foundations of Switzerland, Germany, and Austria through a DACH consortium grant consisting of Ulm University (D), the Medical University Innsbruck (A), and the Inselspital Bern and ETH Zurich (CH). The overall goal of the consortium is to investigate local bone remodeling and mechanoregulation of bone fracture healing in healthy, aged, and osteoporotic humans.

The successful candidate holds or will soon receive a master’s degree in Biomedical, Electrical or Mechanical Engineering, and has preferentially a background in imaging and image processing. It is essential that the candidate is willing and motivated to work at the interface between engineering and clinical research. Additionally, excellent communication skills in English (oral and written) are required. Knowledge of German is advantageous for the clinical interactions but not absolutely required.

We look forward to receiving your online application includinga a motivation letter, CV, university transcripts and names and contact details of two references. Please note that we exclusively accept applications submitted through our online application portal. Applications via email or postal services will not be considered.

For further information about the group please visit our website www.bone.ethz.ch. Questions regarding the position should be directed to Dr. Patrik Christen by email patrik.christen[at]hest.ethz.ch (no applications).

Application

https://apply.refline.ch/845721/5964/index.html?cid=1&lang=en

PhD position in FE musculoskeletal modelling at LBMC in Bron, France

PhD Position: Contribution to the improvement of a FE neck model for robust and bio-fidelic simulations

 

Context

The LBMC develops 3D Finite Element (FE) models to study the behaviour of the human body for applications in crash injury risk assessment, ergonomics and clinical orthopaedics. In these last two contexts, LBMC’s ‘Biomechanics and Ergonomics’ and ‘Biomechanics and Orthopaedics’ research teams have been developing subject-specific musculoskeletal models that aim at representing a virtual subject together with its physiological or pathological state. The EC funded DEMU2NECK project resulted in the development of a detailed FE model of the human neck within this framework. Results from this work allowed to identify the potential benefits of modelling 3D muscular actions (as opposed to 1D lines of action as is currently the case) to better account for the complex biomechanical loading that takes place within the cervical spine during tasks of the daily life. This potential may especially concern our ability to better model subject-specific characteristics, including for example a possible degradation of the muscular functional capacity resulting from either pathology or ageing. Benefits may thus be expected within applications regarding the assistance to the design of medical devices such as spinal implants and prostheses, by contributing to foster the development of ‘in-silico’ clinical trials, but also through the transfer towards applications related to ergonomics or virtual testing for the injury risk assessment of the vehicle occupant in poorly defined out-of-position scenarios (e.g. to better account for the driver’s postural behaviour in a pre-crash phase in the case of future autonomous vehicles).

Objectives

In order to support the development of such applications and ultimately of their use within virtual biomechanical or clinical trials, it is necessary to pursue the work already initiated to ensure the robustness of the active muscle model. This work targets both the numerical verification and the model validation as part of a VV&UQ (Verification Validation and Uncertainty Quantification) framework that is currently developed at LBMC trough a formalised multi-team research effort on the topic. This effort is also supported by Ifsttar through the funding of a MSc student industry placement at LBMC.

The PhD Thesis work will thus focus on the following objectives:

– Improve the robustness of the FE neck muscle model. Accounting for the active part of the muscle in a FE model remains a novel and challenging task, and this objective forms the core of the expected exploratory research and dissemination work. It may target several aspects:

  • The evaluation and improvement of the mechanical formulation and implementation of the active muscle model currently implemented in the LSDyna FE code (i.e. a coupled passive 3D matrix/1D active Hill-type elements),
  • The evaluation and estimation of task-related patterns of activation/muscle force distributions through a parallel FE/rigid-body co-simulation calculation loop,
  • The contribution to the gathering of dynamic in-vivo muscle validation data to help better validate the above predicted muscle force distributions. –

– Further pursue the integration of the subject-specific geometric personalizing approaches that have already been developed at LBMC, for use with medical imaging,

– Further improve the validation and bio-fidelity of the model, and apply it to the study of case-studies of pathologies (such as degenerative muscular pathology or cervical dystonia) and to the comparative predictive evaluation of a range of technical or surgical designs used in cervical arthrodesis or arthroplasty.

Keywords

Modelling, Finite-Element, VV&UQ, Musculoskeletal, Spine, Cervical spine, Muscle, Simulation.

Examples of previous work on the topic

Howley, S. Développement et approche de personnalisation d’un modèle numérique musculaire déformable du cou, Thèse de Doctorat, Université de Lyon, 2014.

Fréchède, B, Kamdem Joutsa, F, Dumas, R. 2016. Multi-objective optimisation to assess muscle forces in a musculoskeletal model of the cervical spine. 22nd Congress of the European Society of Biomechanics ESB2016, July 10-13 2016, Lyon, France

Supervision, team and equipment

The student will be hosted within the ‘Biomechanics and Orthopaedics’ team. He/she will be jointly supervised by two researchers holding complementary expertise in FE and rigid-body dynamics modelling, as well as having positive experience of several co-supervisions on the topic. Equipment includes access to both HyperWorks/Radioss and LSDyna licenses, as well as to Lyon 1 University Department of Mechanics’ P2CHPD calculation cluster.

PhD candidate selection criteria

He/she will hold a MSc (or equivalent) in Mechanics or Mechanical Engineering with excellent results. He/she will also present some relevant prior experience with FE and/or rigid-body modelling as well as some good practical knowledge and strong interest in coding (Matlab, Scilab, Python). A background in biomechanics will be a strong plus for the application.

Application Applications should be made through the following website, where further information is also provided:

https://www.abg.asso.fr/fr/candidatOffres/show/id_offre/75559

Open Position: Biomechanics and Proteomics at TU Wien

Open Position for a University Assistant in Biomechanics and Proteomics

 

Description:                            The Institute of Lightweight Design and Structural Biomechanics (ILSB) of TU Wien invites applications for the position of a University Assistant in the area of biomechanics and protein analysis. The mechanics of biological tissue are closely related to their hierarchical structure and composition. For example the absence of certain noncollagenous proteins in bone has been shown to be deleterious for fracture toughness. Similarly, the presence of sugar-mediated cross-links in collagen within bone as well as in musculoskeletal soft tissues such as tendons or ligaments is thought to alter their material properties. The candidate sought for this position will work at the cross-roads of tissue composition and mechanics, whereby the compositional aspects will be investigated via mass-spectrometry methods under supervision of Prof. M. Marchetti-Deschmann of the Institute of Chemical Technologies and Analytics of TU Wien. A special focus will be on the compositional aspects of the enthesis (the tendon-to-bone-junction) as well as on tendon and isolated individual collagen fibrils. Mechanical tests will be conducted mostly with via atomic force microscopy in the Interfacultary Laboratory for Nano- and Micromechanics of Biological and Biomimetical Materials, employing where the ILSB is a major stakeholder. In addition to conducting research towards a PhD degree the post will also entail participation in administrative tasks and teaching activities at the ILSB.

Qualifications:                      We are looking for an individual with a completed MSc in Biomedical Engineering, Physics or a related discipline. Skills and knowledge in biomechanics, biochemistry, chemical analysis will be advantageous. Further, German language skills (native speaker or level B2 according to CEFR) are required.

Further information:              For informal discussions contact Professor Philipp Thurner, pthurner@ilsb.tuwien.ac.at

How to apply:                          Send applications to rene.fuchs@tuwien.ac.at no later than March 9th 2018