Category Archives: PhD/Master student positions

PhD project on “Computational modelling of spinal growth and vertebral bone adaptation”

We are currently recruiting a PhD student for a project that was funded by the National Centre for Scientific Research (CNRS), France. The project deals with the development of a computational model to better understand spinal growth and bone adaptation. In particular, the project addresses the question how vertebral bodies grow under normal and pathological loading conditions such as in Adolescent Idiopathic Scoliosis (AIS), i.e. a spinal deformity that leads to abnormal vertebral loading, vertebral wedging and ultimately to a significant deformity of the spine. Furthermore, the altered loads on vertebral bodies may lead to a change in bone mass and re-orientation (i.e., adaptation) of the trabecular bone architecture which could play an important role for the development of osteoporosis at later stages in life. Access to longitudinal MRI data both from healthy and AIS subjects will allow for patient specific modeling of spinal growth and adaptation.

Candidates are expected to have a strong background in continuum mechanics and numerical simulations. A previous experience in a domain related to biomechanics and/or imaging techniques will be an asset.

The PhD project is a collaboration between Prof Vittorio Sansalone, Biomechanics team of the Multiscale Modeling and Simulation lab (CNRS UMR 8208), from the University of Paris Est Créteil (UPEC, France) and Professor Peter Pivonka, Director of Biomechanics and Spine Research Group, from Queensland University of Technology (QUT, Australia). The selected candidate will spend half of the time at UPEC, Paris and half of the time at QUT, Brisbane. The successful completion of PhD studies will lead to doctoral degrees both from the University Paris Est Créteil and Queensland University of Technology.

If you are interested in this position, please send your CV together with a cover letter to either Prof. Vittorio Sansalone (Email: vittorio.sansalone@u-pec.fr) or Prof. Peter Pivonka (peter.pivonka@qut.edu.au) by Friday, May 1, 2020.


PhD position in Computational Mechanics with an emphasis on Biomechanics and Piezoelectric Material

A PhD position shared in collaboration between the Computational Mechanobiology Group at the Julius Wolff Institute (Charite Medical School in Berlin) and the Computational and Structural Mechanics group at the Institute of Mechanics in Technische Universität Berlin is vacant. 

Topic 

Bone has the ability to self-regenerate after injury, however, large bone defects often lead to delayed healing or non-unions. The treatment of these conditions remains a clinical challenge. To overcome the limitations of current bone treatment options, novel alternatives hold promise as the next generation of tissue engineering scaffolds. Experimental trial and error in the design of these scaffolds could be reduced by the development of a computer platform that could support the design of these scaffolds. The project therefore aims to develop suitable numerical models to investigate the behaviour and optimal design of tissue engineering scaffolds and their influence on the bone regeneration process. 

Your tasks 

You will employ engineering, mathematical and computational techniques (FEM) to determine the mechanical and electrical signals generated due to the physiological stimulation of a scaffold and to investigate how these signals influence the bone regeneration process. You will also investigate how different parameters influence the bone healing process. Using this understanding, the potential design optimization of scaffolds (concerning scaffold geometrical and material properties) will be also investigated. You have to be able to employ experimental data available to validate and qualify the numerical prediction. 

Your profile 

 Highly motivated candidate with a Master’s or comparable degree in mechanical engineering/biomedical engineering/material science and engineering/mathematical biology or a related discipline 

 Strong skills in Finite Element Modelling (e.g. Abaqus) 

 Ideally knowledge or experience in material science in particular piezoelectric materials 

 Knowledge in Programming is advantageous (e.g. C/C++, Matlab, Python) 

 Willingness to work in a multidisciplinary project 

 Very good English language skills (oral and written) 

What we provide 

This position is fully funded by the German Research Foundation (DFG) for a period of three years (100%, E13 salary group). You will work in friendly teams of highly qualified researchers and in unique research environments. Expected start date is at the earliest convenience, ideally May 1st, 2020. 

Application / Contact 

Please submit your application before March 31st, 2020 via e-mail to Dr. Melika Mohammadkhah (Melika.mohammadkhah@tu-berlin.de). Your email should contain a single PDF document (subject: “Application: PhD position”) including the letter of motivation, your CV (with contact information of at least two references), transcripts of the bachelor’s and master’s diploma, proof of English language skills. 

14 PhD scholarships within exciting ITN project!

Mediate – The Medical Digital Twin for Aneurysm Prevention and Treatment

https://cordis.europa.eu/project/id/859836/it

MeDiTATe aims to develop state-of-the-art image based medical Digital Twins of cardiovascular districts for a patient specific prevention and treatment of aneurysms. The Individual Research Projects of the 14 ESRs are defined across five research tracks:
(1) High fidelity CAE multi-physics simulation with RBF mesh morphing (FEM, CFD, FSI, inverse FEM)
(2) Real time interaction with the digital twin by Augmented Reality, Haptic Devices and Reduced Order Models
(3) HPC tools, including GPUs, and cloud-based paradigms for fast and automated CAE processing of clinical database
(4) Big Data management for population of patients imaging data and high fidelity CAE twins
(5) Additive Manufacturing of physical mock-up for surgical planning and training to gain a comprehensive Industry 4.0 approach in a clinical scenario (Medicine 4.0)


The work of ESRs, each one hired for two 18 months periods (industry + research) and enrolled in PhD programmes, will be driven by the multi disciplinary and multi-sectoral needs of the research consortium (clinical, academic and industrial) which will offer the expertise of Participants to provide scientific support, secondments and training. Recruited researchers will become active players of a strategic sector of the European medical and simulation industry and will face the industrial and research challenges daily faced by clinical experts, engineering analysts and simulation software technology developers. During their postgraduate studies they will be trained by the whole consortium receiving a flexible and competitive skill-set designed to address a career at the cutting edge of technological innovation in healthcare. The main objective of MeDiTATe is the production of high-level scientists with a strong experience of integration across academic, industrial and clinical areas, able to apply their skills to real life scenarios and capable to introduce advanced and innovative digital twin concepts in the clinic and healthcare sectors.

For application to 12 already available ESR positions please visit:
https://euraxess.ec.europa.eu/site/search?keywords=meditate

Three new fully funded PhD positions in soft biomechanics and medical technologies at the University of Portsmouth

Three fully funded PhD positions are currently available in the field of soft tissue biomechanics and medical technologies at the School of Mechanical and Design Engineering of the University of Portsmouth (UK).

All of the three projects arise from a close and strong collaboration between the research group of Biomechanics and local and national hospitals. They all have a strong drive in clinical practice, from which the underlying research question originates.

The first project is aimed to predict the artero-venus fistula outcome/evolution in patients undergoing hemodialysis; the second project is aimed to provide an in vivo measurement of heart valves deformation; the third project is focused on improving clinical practice for lesion detection and diagnosis in gastroscopy.

Further details about the three projects are available online at:

https://www.findaphd.com/phds/project/in-silico-assessment-tool-for-reducing-the-risk-of-failure-of-arterio-venous-fistula-avf-in-patients-subjected-to-haemodialysis/?p115898

https://www.findaphd.com/phds/project/investigating-the-physiological-deformation-of-heart-valves-using-in-vivo-and-in-vitro-techniques/?p115894

and
https://www.findaphd.com/phds/project/enhanced-endoscopic-screening-of-polyps-in-the-upper-gastrointestinal-tract/?p116271

Brilliant and ambitious students attracted by multidisciplinary subjects, interested in medical applications and strongly oriented to authentic teamworking are invited to apply.

The three positions are opened for UK/EEA applicants.

The deadline for the online application is Friday 23rd 2020. 

PhD in Bath: Multiscale Analysis of the interactions between a Novel Total Artificial Heart and the Native Cardiovascular System

Project Description

Project team: Dr Katharine Fraser (k.h.fraser@bath.ac.uk) & Dr Andrew Cookson (a.n.cookson@bath.ac.uk)

Project
Over 500,000 people in the UK suffer from heart failure, with 14,000 admitted to hospital each year and 10,000 deaths. Worldwide, 26 million have heart failure, with a predicted increase of at least 46 % by 2030. The health expenditure on heart failure in the US alone is $31 billion. For patients with severe end-stage heart failure the only hope of long term survival is a heart transplant. However, donor hearts are scarce, resulting in fewer than 200 heart transplants/year in the UK. Alternative treatments are urgently needed to keep patients alive until a donor heart can be found. One alternative is a Total Artificial Heart (TAH): a machine to completely replace the native heart. Unfortunately, the only TAH on the market suffers from several issues.

Scandinavian Real Heart AB are developing a TAH with a completely novel pumping concept based on displacement of a piston and valve. It is hypothesized that the use of positive displacement, rather than rotation, has major advantages for physiological compatibility. This project will then investigate the interactions between the mechanical device and the native cardiovascular system, with the overall aim of assessing the biocompatibility of the device to aid design optimisation and regulatory approval. Specifically, the aims are to quantify the level of blood damage caused by the TAH, and find the effect of pulse wave it generates on the human arterial system.

The research will involve:
• the use of computational fluid dynamics to simulate blood flow within the Real Heart
• the development of numerical models for damage to the different blood cells
• the use of mathematical modelling to investigate pulse waves in the arteries
There is also the opportunity to perform experimental validation of the numerical results.

Through this PhD the student will become an expert in computational and mathematical modelling of fluid flows, including commercial and opensource software, and in-house code development. By working with Real Heart the student will develop teamwork and communication skills; to strengthen these the student will be based with the company in Sweden for 3 months. The University’s DoctoralSkills training includes a wide range of transferable skills courses. The student will write high impact journal papers and present at leading international conferences. Healthcare technology and biomedical devices are rapidly growing industries; a PhD in this area would equip the student with sought after skills and qualify them for a range of opportunities.

This project is an outstanding opportunity to help bring the next generation of mechanical heart pumps to the clinic. In addition, the research will contribute to fundamental science in incompressible fluid mechanics, blood trauma, and arterial dynamics, and develop new simulation techniques to advance the field of mechanical circulatory support development.

Candidate:
The successful applicant will ideally have graduated (or be due to graduate) with an undergraduate Masters first class degree or very good 2:1 or MSc distinction (or equivalent). English language requirements must be met at the time of application to be considered for funding.

More Details:

https://www.findaphd.com/phds/project/multiscale-analysis-of-the-interactions-between-a-novel-total-artificial-heart-and-the-native-cardiovascular-system/?p110261

Application:
Formal applications should be made via the University of Bath’s online application form for a PhD in Mechanical Engineering. Please ensure that you state the full project title and lead supervisor name on the application form.

https://samis.bath.ac.uk/urd/sits.urd/run/siw_ipp_lgn.login?process=siw_ipp_app&code1=RDUME-FP01&code2=0014

A full application must be submitted by the application deadline, including all supporting documents, to enable review.

More information about applying for a PhD at Bath may be found here:

http://www.bath.ac.uk/guides/how-to-apply-for-doctoral-study/

Anticipated start date: Monday 30 March 2020

Funding Notes

Funding is for up to three and a half years. It includes UK/EU tuition fees, training support fee of £1,000 per annum and a Maintenance stipend of £15,009 per annum (2019/0 rate). EU students are eligible to apply if they have been resident in the UK for 3 years prior to the funding commencing.

Research Assistant in Murnau

 As of April 1, 2020 we are looking for a  Research Assistant (PreDoc, m/f/d)  to strengthen our team at the Institute for Biomechanics  initially limited to 3 years. 

Your duties: 

 Collaboration in the research project “Population variability in orthopaedic bio-mechanics”. The aim is to develop and mechanically characterize materials that serve as synthetic bones for the development and validation of new implants. The methodological focus is on biomechanical testing, medical imaging and finite element analysis. 

 Preparation of and participation in scientific reports and publications 

 Presentation of research results at scientific events at home and abroad 

 Submission of research proposals, participation in externally funded projects 

 Cooperation in teaching and supervision of interns 

Your profile: 

 A completed diploma or master’s degree in biomedical engineering, medical technology, mechanical engineering, civil engineering, technical physics, materials science or equivalent studies in Germany or abroad 

 Craftsmanship and pleasure in manual laboratory work 

 Basic experience in scientific work 

 Programming experience and affinity to statistical analysis methods 

 Strong communication skills and very good knowledge of German and English, both written and spoken 

 Reliability, an independent way of working and pleasure in participating in in-ter-disciplinary teams 

Our offer: 

 A modern working environment with varied activities in a constantly growing clinic with excellent infrastructure and equipment 

 A comprehensive and structured induction training with regulated procedures 

 Further education and development opportunities (e.g. a doctorate at the PMU Salzburg) 

 Support of a work-life balance through flexible working hours and at least 30 days of vacation 

 Attractive remuneration according to TV-BG Kliniken as well as additional social benefits and employee benefits in the region 

The inclusion of people with disabilities corresponds to our self-image and we therefore welcome your application. 

Please send your application with a letter of motivation, curriculum vitae and certificates to the Institute of Biomechanics at the BG Unfallklinik Murnau, Prof.-Küntscher-Str. 8, 82418 Murnau or by e-mail to biomechanik@bgu-murnau.de or via our career portal (www.bgu-murnau.de). We are looking forward to meeting you! 

PhD Position “Machine Learning in Biomechanics”

The ARTORG Center for Biomedical Engineering Research is the University of Bern´s transdisciplinary Center of Excellence for medical technology research. Its mission is to tackle unmet clinical needs and envision future challenge in diagnosis, monitoring and treatment to create viable healthcare technology solutions with imagination, agility and purpose. Its projects run from discovery and basic research to clinical translation. 

The Computational Bioengineering Group has opened a Ph.D. Student position in machine learning to evaluate the risks of failure of total shoulder arthroplasty. You will develop machine learning algorithms to better understand the biomechanics of shoulder replacements and improve patients’ care. You will be part of an inter-disciplinary project funded by the Swiss National Science Foundation (www.snf.ch) performed in collaboration with the Swiss Federal Institute for Technology (www.epfl.ch), and the Lausanne University Hospital (www.chuv.ch). 

You will integrate a research group that develops experimental and computational methods in biomechanics to test original scientific hypotheses, develops new diagnostic methods, and medical devices. 

Your tasks 

– Develop algorithms to analyze medical image and generate patient-specific finite element models 

– Quantify anatomical degeneration of the hard and soft tissues of patients undergoing total shoulder replacement 

– Infer the pre-morbid anatomy of degenerated shoulder joints 

– Determine the optimal treatment strategy from pre-operative data and population-based finite element simulations 

Qualifications required 

– Master’s degree in computer science, engineering, or applied mathematics. 

– Experience and/or course work in computer vision and machine learning 

– Solid programming skills in Python or C/C++/C# 

– Background in mechanics and computational methods 

– Hands-on experience with finite element analysis would be a distinctive asset 

– Strong communication skills in English required (working language at the ARTORG Center) 

We offer 

– Creative and international environment to conduct competitive research in an interdisciplinary team 

– Strong links to the Bern University Hospital (Inselspital) and Lausanne University Hospital (CHUV) to provide a coherent view of how computer modeling in healthcare can benefit patients 

– Competitive salary (according to the guidelines of the Swiss National Science Foundation) 

– Expected starting date; summer 2020 

– Free German courses available for those wishing to learn 

Application Interested candidates should send their detailed resumes with references, motivation letter, abstract of your MSc thesis, and school transcripts to Prof. Philippe Büchler, philippe.buechler@artorg.unibe.ch. 

About the University of Bern The University of Bern is located at the heart of Switzerland. Internationally connected and regionally anchored, it cultivates exchange with society and strengthens partnerships between science, medicine, business, and politics. The University of Bern is committed to a deliberate and ethical responsibility towards people, animate and inanimate nature. As an important educator, promoting enterprise and industry in the region and beyond, it distinguishes itself through problem-oriented research into questions of pressing social relevance. The University of Bern is an equal opportunity employer, promotes healthy work-life-balance and safe working environments, and strives to increase the number of women at all levels in its faculties. 

PhD position at the University of Zaragoza

Position and project

The Biomedical Signal Interpretation and Computational Simulation group at the University of Zaragoza (Spain) seeks a PhD Student to work on the interface between Cardiac Electromechanical Modeling and Artificial Intelligence in the context of ischemic heart disease.

The position is part of the BRAV∃ project funded by Horizon 2020 programme of the European Commission. BRAV∃ aims at providing a lasting functional support to injured hearts through the fabrication of personalized tissue engineering-based biological ventricular assist devices (BioVADs). This ambitious project will combine multimodal deep cardiac phenotyping, advanced computational modeling and biomechanical analysis in a large animal model of disease to create a personalized 3D printable design.

The candidate will work on developing deep-learning neural networks trained on simulated data from large-scale physics-based electromechanical swine models, which is expected to allow obtaining simulated electromechanical data in an efficient way while maintaining accuracy as high as possible. The proposed multidisciplinary approach ultimately aims at contributing to shed light into the interaction between BioVADs and recipient hearts.

Qualifications

Candidates must hold an MSc in Engineering, Mathematics or Physics or similar discipline.

Expertise in computational modeling and/or signal processing is recommended. Strong oral and written communication skills in English are a must. Experience in Python and/or C++ programming is preferred. Previous experience with numerical methods for solving PDEs (e.g. Finite Element Method, Meshless Methods), Artificial Intelligence (e.g., neural networks) and CUDA programming is considered a plus.

The I3A Institute at University of Zaragoza

The Aragon Institute of Engineering Research (I3A), within the University of Zaragoza, comprises more than 500 researchers and a vibrant environment for multidisciplinary research.

Every year I3A participates in more than 300 research projects funded with over 10 M€ and more than 200 contracts with industry with 5 M€ turnover. Around 50 PhD theses supervised by I3A members are defended and nearly 300 papers are published in JCR journals every year. The Biomedical Signal Interpretation and Computational Simulation group at I3A, University of Zaragoza, is a leading expert in the development of signal processing tools to aid in the diagnosis, prognosis and treatment of cardiovascular diseases and conditions. This expertise is combined with modeling and simulation of cardiac electrophysiology to investigate causes and consequences of the phenomena observed from the processed signals.

Application

For additional information about the position, please contact Dr. Esther Pueyo

(epueyo@unizar.es) or Dr. Konstantinos Mountris (kmountris@unizar.es).

PhD position at university of Portsmouth

STRAIN MEASUREMENT IN SOFT TISSUES AND BIOMATERIALS USING HIGH-RESOLUTION X-RAY COMPUTED TOMOGRAPHY (XCT) AND DIGITAL VOLUME CORRELATION (DVC)

Closing date: 23 February 2020

Applications are invited for a fully-funded 3-year PhD to commence in October 2020. 

The PhD will be based in the School of Mechanical and Design Engineering, Faculty of Technology and will be supervised by Dr Gianluca TozziDr John Chiverton and Professor Gordon Blunn

This PhD studentship is one of six PhD studentships funded by the University of Portsmouth in the area of biomaterials and bioengineering.  These studentships  will support the University’s strategic plan engaging with clinicians working in Portsmouth Hospital Trust to solve real-life medical problems.   The successful applicants would be part of a cross-faculty research cluster in medical technologies.

This programme of research involves several Schools based in the Faculty of Science and Health and the Faculty of Technology.  The vision of the cluster is to train a cohort of PhD students who contribute to the academic environment, some of whom would be expected to develop academic careers in this expanding area whilst others would be employed in the growing international medical technologies industry. 

Training would be enhanced by extended visits to other institutions involved in similar research and by visits to hospitals to meet with clinicians involved in the research projects.

The scholarship covers tuition fees and an annual maintenance grant of £15,009 (UKRI 2019/20 rate) for three years.  Scholarship recipients will also receive up to £3,000 for research project costs/consumables during the duration of the programme.

The work on this project will involve:

  • Advances in X-ray computed tomography (XCT) to visualise and quantify morphology in musculoskeletal soft tissues and biomaterials.  
  • In situ XCT mechanical testing and digital volume correlation (DVC) to evaluate full-field strain distribution in soft tissues and biomaterials when incremental physiological loading is applied. 

Musculoskeletal disorders (i.e. osteoarthritis – OA and post-traumatic osteoarthritis – PTOA) have a huge impact on society. In particular, those conditions affect soft tissues such as articular cartilage deterioration and ligament/tendon injury, where the need of understanding their morphology and mechanics is of paramount importance to design new biomaterials and treatments.

High-resolution X-ray computed tomography (XCT) offers accurate resolution to visualise and quantify morphology in mineralised tissues such as bone. XCT setups are typically limited to bone tissue imaging due to weak absorption of soft tissues (i.e. cartilage, ligaments). Therefore, they are very difficult to image with sufficient contrast. This project will provide fundamental advances in XCT-based imaging of soft tissues such as ligaments, cartilage and 3D printed or electrospun tissue replacements.

The project will benefit from state-of-the-art XCT facilities and dedicated software available at the Zeiss Global Centre (ZGC, SMDE, UoP), which will provide unique phase-contrast/retrieval capability and in situ mechanical rigs to image and mechanically evaluate soft materials, without the need of elaborated staining procedures.

The project will play a strategic role in the development of imaging technology at the ZGC, and help the centre to retain its national and international reputation in the evaluation of biological tissues and biomaterials (i.e. DVC) for Bioengineering. 

How to apply

We’d encourage you to contact Dr  Gianluca Tozzi at gianluca.tozzi@port.ac.uk to discuss your interest before you apply, quoting the project code.

When you are ready to apply, you can use our online application form. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV. 

Our ‘How to Apply’ page offers further guidance on the PhD application process. 

If you want to be considered for this funded PhD opportunity you must quote the project code SMDE5070120 when applying.

More info: https://www.port.ac.uk/study/postgraduate/postgraduate-research/research-degrees/phd/explore-our-projects/strain-measurement-in-soft-tissues-and-biomaterials

PhD scholarship @Pompeu Fabra, Barcelona

PhD Project D-Risc: Multiscale modelling & data mining for intervertebral disc degeneration risk prediction
(Pompeu Fabra University, Barcelona, Spain)

GRANT PROGRAMME: “LA CAIXA” DOCTORATE INPHINIT

35 PhD fellowships for early-stage researchers of any nationality to pursue their PhD studies in research centres accredited with the Spanish Seal of Excellence Severo Ochoa, María de Maeztu or Health Institute Carlos III. This frame is addressed exclusively to PhD research projects on STEM disciplines: life sciences and health, experimental sciences, physics, chemistry and mathematics.

More information

POSITION: “D-Risc: Multiscale modelling & data mining for intervertebral disc degeneration risk prediction

Area and discipline: please choose 1 from the following list:

Area of knowledge

Physical Sciences, Mathematics and Engineering

Group of disciplines
Telecommunications, Electronics, Robotics, Biomedical Engineering, Automation Engineering, ICT

Discipline

Biomedical Engineering, ICT

Research project / Research Group description:

Research project and main focus of the research line of the research group in which the fellow would join

D-Risc aims to reveal critical interplays of crucial stimuli within the intervertebral disc (IVD) that might lead to IVD degeneration, based on morphological and physiological parameters. Different models at the organ, tissue and cellular levels will be used. Specifically, the project will combine multi-physics finite element models at the organ and tissue levels with agent-based and network models at the cell and molecular levels, to simulate the local regulation of IVD cells in multifactorial physical and biochemical micro-environments. Simulation results will be mined with patient-specific morphological, physical activity and life-style data. Depending on the identified multiscale paths that can lead to degeneration-related cell activity (i.e. catabolic shift of cell activity), personalised recommendations for prevention- and optimised conservative treatments will be established.

D-Risc will exploit the competencies of the Biomechanics and Mechanobiology (BMMB – http://biomech.es) lab of the BCN MedTech research unit at the Department of Information and Communication Technologies (DTIC) of the Universitat Pompeu Fabra (UPF), Barcelona. The project will be additionally implemented in cooperation with the medical image analysis and machine learning areas of BCN MedTech (http://bcn-medtech.upf.edu/).

UPF was established in 1990 as a public university with strong dedication to excellence in research and teaching. It is the 1st Spanish university in the world Top 200 (THE2020), the 11th (ranked 5th in Europe and 1st in Spain) under 50 years (THE18). It also ranked 5th in Europe and 1st in Spain (U-Multirank 2018) in teaching and research performance (U-Ranking, BBVA Foundation & Ivie, 2018), quality output (excellence rate), normalized impact and percentage of collaborative papers with foreign institutions. UPF is full member of the Big Data Value Association (BDVA). DTIC has since its creation emphasized scientific excellence and internationalisation as core aspects of its activities. It has an important track record of active participation in EU projects (a total of 66 FP7 projects and 10 other projects in non-FP7 program such as CIP, Ambient Assisted Living and the Lifelong Learning Program, and, up to now 44 H2020 projects). It is the Spanish university department with the largest number of ERC grants (9 FP7 and 9 H2020) and is part of the FET Flagship initiative “The Human Brain Project”. DTIC has been awarded the “María de Maeztu” excellence by the Spanish government for the quality and relevance of its pioneering scientific research.

BCN MedTech is the Barcelona Centre for New Medical Technologies at UPF. It focusses on biomedical integrative research, including mathematical and computational models, algorithms and systems for computer-aided diagnosis and treatment, and the translation thereof into relevant clinical problems and industrial products. It has a team of 60 full time researchers working on medical image and signal processing, computational simulation, computer-assisted surgery and biomedical electronics. Within BCN MedTech, the BMMB lab combines mechanistic and stochastic theoretical modelling with computational methods in biology and physics, to rationally explore the complex multiscale interactions between tissue multiphysics and biological processes, and to understand the bottom-up regulation of the functional biomechanics of organs in health and disease. The specific targets are cartilaginous (rheumatic disorders), bone (osteoporosis), arterial (atherosclerosis) and lung (emphysema) tissues. The project will combine this expertise with computational anatomy and manifold learning techniques for patient stratification, from the BCN MedTech medical image analysis and machine learning areas.

Job position description: role, responsibilities and skills required within the project/group.

D-Risc capitalizes on previous research at BCN MedTech, to assess the risk of disc degeneration (DD). Patient-specific IVD finite element (FE) models will be coupled to agent-based (AB)/network cell models, to predict catabolic shifts of cell activity in function of morphological, metabolic and mechanical factors. According to subsequent machine learning analyses, specific combination of factors will be identified as possible risks for DD.

Low back pain (LBP) affects up to 85% of people at some point in life. It is strongly related to DD, with phenotypes that cannot be explained solely by genetic factors as they also depend on mechanical loads.

In vivo or in-vitro studies investigated DD at the cell and tissue levels, but they are costly and limited in terms of parameterization, effective number of measurements and long-term observations. In contrast, computational modelling allows testing different boundary conditions (mechanical, biochemical, …) and numerous theoretical hypotheses over long timescales, at a relatively limited cost. 

Coupled to personalized organ models, multiscale models and simulations can indicate common patterns in specific groups of IVD, as well as critical combinations of cell stimuli and the effects thereof on DD observable features. In particular, the mining of model inputs together with simulated data can reveal such patterns and combinations.

The successful candidate will join the BCN MedTech team and will be co-supervised by faculties, experts in computational multiscale modelling and machine learning. (S)He will systematically analyze the 3D anatomy of 500 patient-specific IVD FE models, available at UPF, to define relevant groups of FE /AB multiscale simulations. Then, (s)he will use machine learning algorithms to build correlation models among personalized model inputs and predicted cell activity, to create a DD risk score model. 

D-Risc will involve key collaborations with population cohort infrastructures in UK and Finland.

PRINCIPAL INVESTIGATOR & CONTACT AT HOST

Dr Jérôme Noailly
Contact: jerome.noailly@upf.edu

Barcelona Centre for New Medical Technologies (BCN MedTech)

Department of Information and Communication Technologies

Universitat Pompeu Fabra, Barcelona, Spain

ADDITIONAL INFO

Press articles related with the work of the BCN MedTech BMMB team in disc degeneration:

CONTRACT CONDITIONS & ELEGIBILITY

The maximum total payment amount will be €122,592, as broken down below:

  • Three annual payments of €34,800 each one. Where applicable, the amounts corresponding to the Social Security contributions payable by the employer (in this case, the host institution), as well as any other compulsory fee, whether current or that may be provided for in a future legal framework, will be deducted from the yearly gross amount of €34,800 to be received by the fellow.
  • €3,564 per year, as an additional amount for conferences, courses, research stays, consumables, equipment, charges for the use of intellectual property, etc. This additional amount will be managed by the centre for the benefit of the fellow and must be justified separately.
  • ”la Caixa” Banking Foundation will award a prize of €7,500, which will be paid in the fourth year, should the fellow be able to deposit their thesis within 6 months after the third year of their fellowship has ended.
  • ”la Caixa” Banking Foundation will sign an agreement with the host institution, which will receive the fellowship payment directly. This must be wholly allocated to cover the amounts arising from Social Security contributions and other required corporate expenses payable by the employer, where applicable, as well as the fellow’s gross stipend and the additional amount.

Eligibility:

  • Experience: At the call deadline, applicants must be in the first four years (full-time equivalent research experience) of their research careers and not yet have been awarded a doctoral degree.
  • Studies pursued: At the time of recruitment, candidates must comply with one of the following options:
    • To have completed the studies that lead to an official university degree adapted to the European Higher Education Area awarding 300 ECTS credits, of which at least 60 ECTS credits must correspond to master level.
    • To have completed a degree in a university not adapted to the European Higher Education Area that gives access to doctoral studies. The verification of an equivalent level of studies to the ones mentioned above will be made by the university when the admission procedure starts.
  • Geographic mobility: For candidates applying to Spanish centres or units: Candidates must not have resided or have carried out their main activity (work, studies, etc.) in Spain for more than 12 months in the 3 years immediately prior to the call deadline.
  • Level of English: Candidates must have a demonstrable level of English (B2 or higher).

APPLICATION & DEADLINES

How to apply: https://obrasociallacaixa.org/en/investigacion-y-becas/becas-de-la-caixa/doctorado-inphinit/incoming

Deadline: 4 February 2020

Important dates:

18 February 2020 – Deadline for submitting the language certificate.

16 April 2020 – Notification of the shortlist results.

27 and 28 May 2020 – Face-to-face interviews in Barcelona.

2 June 2020 – Publication of the final list of selected candidates.

From 2 to 30 June 2020 – Matching research centre – fellow.