Category Archives: News

General news articles from the ESB.

Tenure track (junior professorship) in tissue Biomechanics @LMGC, University of Montpellier

As part of the development of research activities in biomechanics and teaching activities in mechanical engineering, the University of Montpellier is recruiting for a non-permanent position of junior research professor in soft tissue biomechanics. Through here/his project, she/he will increase our knowledge and understanding of poro-elastic fibrous tissues (with a focus on cartilages) and of the contact mechanisms between those tissues in joints. Understanding these behaviors, including fluid-structure mechanisms could lead to (i) better understanding of the mechanobiological behavior and growth of cartilage and (ii) better understanding and modeling of contact mechanisms within joints and thus propose strategies for rehabilitation. Robotic solutions, different imaging modalities (US, MRI, microCT, microsopy,…), biosensors and 3D bioprinting may be developed/used in here/his research project, with the help of collaborative research between labs of the University.

More information:

Senior Scientist position human movement biomechanics @TU Wien

Senior Scientist and head of newly built and equipped human movement lab staff position for a biomechanical engineer with mechanical/mechatronics engineering background and interest in Human Movement Biomechanics and development of assistive devices, available at Vienna University of Technology. The position is initially limited to two years, extension to permanent position possible.

More information:

Postdoctoral researcher position on articular cartilage developmental biomechanics @University College Dublin

A postdoctoral researcher position is available in the Developmental Biomechanics Group. The research project is focussed on cartilage development and healing, and will be in close collaboration with Prof Pieter Brama from the UCD School of Veterinary Medicine. Experimental (wet lab, e.g., histology) experience (ideally) with musculoskeletal tissues is essential for the position. The funding available is for nine months, but every effort will be made to extend the duration of the position. The start date is asap, and latest July 2022.

More information:

If interested in the opportunity, or for further enquiries, please email Prof Nowlan ( your CV in the first instance. 

PhD position on cardiac tissue growth & remodeling @TUDelft

Heart failure is a progressive chronic condition under which heart tissues undergo detrimental changes in structure and function across multiple scales in time and space. Given the role that biomechanical stimuli play in the onset and progression of these remodeling processes, cardiac restraint devices are seen as a promising treatment strategy. However, given the limited understanding of the underlying cardiac tissue behavior, current designs fail to successfully counteract pathological remodeling in the long term.

To this end, the aim of this PhD project is to develop, implement, verify, calibrate, and validate a microstructurally and functionally informed cardiac tissue model for growth and remodeling using finite element analysis. The outcomes of the developed framework will be leveraged to design enhanced bio-informed cardiac restraint devices.

Within this project, the PhD candidate is expected to operate within a multidisciplinary team of engineers, biomedical scientists, and cardiac surgeons. The outcomes of this project will be disseminated to the scientific community and to a general audience through presentations at (inter-)national conferences and through publications in peer-reviewed journals. Additionally, the candidate is expected to take part in educational activities within the department (assist in teaching, act as a mentor for master students, supervise master thesis work, … ).

The PhD candidate will be supervised jointly by dr. ir. M. Peirlinck (dept. of Biomechanical Engineering) and dr. ir. Noël (dept. of Precision & Microsystems Engineering) at Delft University of Technology. Our labs have a strong network of national and international collaborators in both academia and industry.

More information:

Research Fellow position on Data-driven fitting for the next generation of prosthetic sockets @University of Southampton

Join an exciting interdisciplinary research team of biomedical engineers, prosthetists, physiotherapists, healthcare psychologists, social scientists and software engineers, who are developing a method of designing the bespoke prosthetic ‘socket’ interface between a person and their prosthetic limb, using artificial intelligence (AI) to interpret data from expert clinical designers. 

You will work primarily with academics at the University of Southampton (Dr Alex Dickinson, Dr Cheryl Metcalf, Dr Maggie Donovan-Hall and Dr Peter Worsley) on a project led by company partner Radii Devices Ltd (Dr Joshua Steer), with prosthetics service provider Opcare / Ability Matters Ltd.

Application deadline: Monday 28 February 2022

More information:

Post Doc Position @KL Krems, Austria

The Karl Landsteiner University of Health Sciences (KL) is part of an academic and research community located at the Campus Krems, and includes a network of comprising teaching hospitals in St. Pölten, Krems, Tulln and Eggenburg. KL is committed to raising its profile in specific areas of biomedicine, biomedical engineering, and biopsychosocial sciences by entering into strategic academic and research partnerships with other institutions.

From April 2022 the KL offers a 2-year research position at the Division „Biomechanics“ (Head: Univ. Prof. Dr. Dieter Pahr) with the option of getting permanent upon adequate performance:
Research Assistant/ Lab Manager (Post Doc) (40 h) (f/m/d). The Division Biomechanics is part of Prof. Pahr’s Interuniversity Biomechanics Laboratory, which also includes his research group at the TU Wien.

Your tasks:
• Independent experimental research activities in the field of musculoskeletal biomechanics
• Publication activities and writing of applications for external funding
• Teaching and support in administrative tasks
• Supervision of Bachelor, Master and PhD students
• Administration and maintenance of the laboratory infrastructure
• Support of the laboratory head

Your Profile:
• Completion of a suitable doctorate (e.g. mechanical engineering, physics, biomedical engineering, …)
• In-depth knowledge in biomechanical testing (material and/or implant testing incl. programming of measurement data analysis)
• Appropriate track record of publications in scientific journals as well as conference contributions.
• Experience with clinic-related research and imaging techniques (CT or MRI) would be an advantage
• Good German and very good English skills, both written and spoken
• Process-oriented, accurate, structured way of working with a strong ability to prioritize
• Open, resilient and flexible personality with a professional attitude

Your Perspective:
You can expect a challenging job in a highly motivated team. KL is committed to an anti-discriminatory employment policy and values equal opportunities and diversity. KL specifically encourages qualified people with different diversity characteristics (gender, age, ethnicity, denomination, sexual orientation, etc.) to apply. The minimum monthly gross salary for this position is 3,500 € (40 hrs) gross per month. Readiness for overpayment exists with appropriate experience and qualification.

Applications should include a motivation letter, curriculum vitae and credentials and should be mailed by 13th of March 2022 referring to jobnumber “2202” to Ms. Christina Schwaiger of the Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria ( ).

Postdoc position on computational modeling of integrin signaling and cell-ECM interactions @Maastricht University

The department of Cell Biology-Inspired Tissue Engineering (cBITE) at the MERLN Institute for Technology-inspired Regenerative Medicine at Maastricht University in the Netherlands invites applications for a post-doctoral position. The post-doctoral researcher will perform cutting-edge research in computational modeling methods applied to regenerative medicine and more specifically, to cell-matrix interactions.

Regenerative medicine (RM) holds the promise to cure many of what are now chronic patients, restoring health rather than protracting decline, bettering the lives of millions and at the same time preventing lifelong, expensive care processes: cure instead of care. The scientific community has made large steps in this direction over the past decade, however our understanding of the fundamentals of cell, tissue and organ regeneration and of how to stimulate and guide this with intelligent biomaterials in the human body is still in its infancy. To date, the RM field has focused on studying cell-biomaterial interactions. Materials properties such as elasticity, topography, hydrophobicity, and porosity have all been shown to influence cell fate, and the introduction of high-throughput combinatorial approaches is expediting research and decoupling the properties to further inform the design of biomaterials. However, in order to improve the design of synthetic biomaterials, it is crucial to understand the physiological cell-ECM interactions and how these influence cell behavior. This research project aims to use in silico models to simulate cell-ECM interactions, improve our fundamental understanding thereof and use the obtained knowledge to design improved synthetic matrices.

Project description:

  • Computational modeling of integrin signaling, cell-ECM interaction to inform the design of synthetic matrices;
  • Parameter optimization and sensitivity analysis;
  • Analysis and integration of various in vitro/in vivo data for model calibration.

What we offer:

  • Computational ecosystem at Maastricht University: Institute for Data Science (IDS), Department of Knowledge Engineering (DKE) and Maastricht Centre for Systems Biology (MacsBio);
  • Excellent computational and experimental facilities to validate the in silico analyses and predictions in vitro/in vivo;
  • Interdisciplinary environment within MERLN and the “Materials-driven regeneration (MDR)-consortium”

Project embedding:

The project will be coordinated by the MERLN Institute for Technology-Inspired Regenerative Medicine ( as part of the “Materials-driven regeneration (MDR)-consortium” (see for more information) which brings together an interdisciplinary team of excellent scientists at three leading institutes (ICMS at Eindhoven University of Technology, RMU at Utrecht University and MERLN at Maastricht University). The central goal of MDR’s research program is to investigate, design and use intelligent biomaterials that drive the functional regeneration of living tissues and organs under complex (patho)physiological conditions.

More information:

For more detailed information you can contact: dr. A. Carlier, email

2-year post-doctoral position in spine biomechanics @ University of Leeds

Do you have a strong technical background in experimental joint biomechanics with an interest in spine biomechanics? Would you like to work as part of a multidisciplinary institute to address a clinically-driven challenge?

We are looking for a proactive individual to join our team of researchers at the Institute of Medical and Biological Engineering at the University of Leeds, leading research on longer lasting joint replacements, tissue sparing interventions and biological scaffolds for tissue regeneration.

This role is created part of an EPSRC project aiming to characterise spinal facet joints biomechanics. In the UK, four out of five adults suffer from back pain at some point in their life, some of which require spinal fusion, an invasive intervention designed to stop the motion of the affected spinal area. After fusion however, facet joint degeneration can increase and create new symptoms and long term pain for one in four patients.

This project will develop novel testing methods and tools combining experimental and computational modelling to gain a better understanding of the degenerated facet joint biomechanics and how it changes following fusion. You will join a wider group developing in vitro and in silico preclinical models of musculoskeletal joints.

You will have a strong background in spine biomechanics or in experimental contact mechanics and have a proactive approach to working in an experimental and computational environment. You will join an institute that includes different expertise and substantial experience in supporting early stage researchers in a key phase of their career. We encourage an environment of collaboration, trust and wellbeing, which values difference of ideas and embraces diversity.

More info (job description and how to apply) available HERE
Contact: Marlène Mengoni

5 PhD positions @ MatureTissue

MatureTissue –



MatureTissue offers a 4-year (48 months) employment contract for early stage researchers (PhD positions).
The goal of the DC MatureTissue is to train future leaders who will bridge engineering and biology to find solutions for a healthy and aging society.



Research into healthy aging not only means to investigate fast killers, like cancer or SARS-CoV-2, but also the musculoskeletal aches in our bodies. Aches may start small, but they can become severe and significantly impair the quality of life, especially at older age. This is a clear unmet clinical need, and well-documented joint research interest of the MatureTissue faculty members. MatureTissue is perfectly aligned with the overall research strategies of the Technikum Wien and TU Wien.

MatureTissue is underpinned by a consortium of researchers from the Technikum and TU Wien bringing together both applied and basic science focus; only by this bundling of expertise all essential topics are covered: bioreactorsmicrofluidicsbiomechanics, molecular biologyand analytical chemistry. We, the MatureTissue faculty, want to recruit 5 outstanding PhD students and work together to address important challenges of musculoskeletal conditions by maturing 3D cell constructs to functional artificial tissues of bone, tendon, cartilage and muscle by controlled mechanical stimulation.

Lecturer in Fluid Biomechanics @UTC Compiegne

The Biological Fluid Structure Interactions team (IFSB) of the Biomechanics and Bioengineering laboratory (BMBI) of UTC Compiegne, specialized in the study of physiological flows and therapeutic techniques associated with the cardiovascular system, is recruiting a Lecturer in fluid biomechanics, whether approached experimentally, numerically or theoretically. In particular, it wishes to strengthen research work related to blood macrocirculation.

The candidate must, if possible, demonstrate solid skills in hemodynamics in large vessels, with multi-scale and/or multi-physical approaches, or in connection with endovascular medical devices.

The team nevertheless remains open to any other proposal for a research topic related to the biomechanics of fluids.

Candidates with skills in the fields of fluid mechanics and/or fluid/structure interactions but with a proven interest in biomedical applications will also be considered.

More information: