Blog Archives

25th Congress of the European Society of Biomechanics

Featured

The 25th Congress of ESB will take place in Vienna, Austria from 7 – 10 July 2019.

ESB 2019 is jointly organized by Philipp THURNER (TU Wien), Dieter PAHR (TU Wien & KL Krems), and Christian HELLMICH (TU Wien). The congress itself will take place at the University of Vienna which is located in the centre of the city.

Prospective authors are encouraged to submit their latest research for capturing and discussing the science at the forefront of biomechanics in a mix of oral and poster presentations.

Abstracts have to be submitted online through the congress website by January 31, 2019. Further information is available here.

Further detailed information as well as information on sponsoring and exhibition can be found here.

We are looking forward to receiving your contributions and to welcoming you at ESB2019 in Vienna!

Posdoc Position in characterization and modeling of elastic protein @ Université de Lyon (France)

Mechanical characterization and modeling of a synthetic elastic protein and its effects on the arterial function

A post-doctoral fellowship is available at the Center for Biomedical and Healthcare Engineering Mines Saint-Etienne – SAINBIOSE (INSERM-U1059) – Université de Lyon (France).

Scientific context: Elastin is the main elasticity provider for several soft tissues (such as dermis, arteries, pulmonary alveoli) in its fibrous form and a signaling molecule in cell/extracellular matrix interaction. Elastin-rich elastic fibers allow the large artery walls to transform the pulsatile blood flow ejected by the heart into a continuous blood flow in the peripheral arteries (Windkessel effect). Dysfunctions are highly correlated with diseases such as artery stenosis, aneurysm, hypertension or cardiac hypertrophy, which have strong repercussions on arterial biomechanics and can threaten the vessel integrity.
Setting aside surgery, there is currently no treatment for preventing, blocking or treating any loss of elasticity. It therefore appears, from a biomechanical point of view, that the introduction of an entity that provides elasticity within the arterial wall would be the most trivial action to stop arterial stiffening, but remains currently limited due to chemo-biological issues. The Arterylastic project, to which the thesis is linked, proposes to unlock this technological barrier using an original synthetic elastic protein (SEP) recently developed with a synthetic backbone devoted to skin engineering.

Academic context: As previously mentioned, the thesis takes place in a larger project named Arterylastic, funded by ANR, combining pluridisciplinary approaches of three laboratories in France: LBTI – the Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (UMR5305 CNRS/UCBL1 Lyon), HP2 –Hypoxie Physiopathologie Cardiovasculaire et Respiratoire (INSERM U1042 – University Grenoble Alpes) and Sainbiose (within the Center for Biomedical and Healthcare Engineering CISSAINBIOSE/INSERM U1059 – Mines Saint-Etienne). The PhD student will work at CIS, which also conducts major international research projects in the field of soft tissue biomechanics, in particular aortic aneurysms. He will collaborate with other researchers involved in ERC projects (https://www.mines-stetienne.fr/en/author/avril/, https://www.emse.fr/~badel/).

Objectives: The objective is to restore (or at least improve) arterial function and mechanical properties under conditions of elastic fibers injury. The objective will be reached if the SEP is correctly integrated into elastic fibers and if the SEP restores arterial wall elasticity and/or physiological parameters in relevant animal models. In this thesis, we will evaluate the mechanical behavior of the cross-linked SEP and of arterial samples from treated mouse models and a numerical model will be developed from experimental data to better predict treatment parameters.
The main tasks will be:
1. Experimental tests will be carried out for characterizing the macroscopic mechanical properties of the SEP and of arteries treated with the SEP. The cross-linked SEP will be characterized using tensile tests with a customized device. Mechanical parameters of treated arteries will be assessed by measuring pressure-diameter curves from mouse arteries tested in a customized tension-inflation test.
2. A multiscale numerical model of the mechanical behavior of arteries will be elaborated, taking into account their microstructural composition and morphology (bilayer, specific contributions of elastin, collagen, smooth muscle cells, possible proteoglycans) and including the effects of possible grafting of the SEP to the arterial wall. The model will be tested for arteries with competent elastic fibers, for arteries with damaged elastin and induced-tissue remodelling, and for arteries treated with the SEP.
3. The experimental results obtained at task 1 will be used to evaluate and calibrate the prediction ability of the numerical model developed in task 2. Sensitivity analysis permitting to find the optimal treatment conditions with the SEP for different types of therapeutic targets will be addressed.

Candidate profile: Candidates with strong skills in mechanics (modeling and experimental) and biomechanics are expected. Motivation and interest in bioengineering applications is recommended.

How to apply: Send CV, cover letter and letters of recommendation to claire.morin@emse.fr and avril@emse.fr.

PhD Positions in Failure Criterion for Implanted Bone Screws @KLKREMS

The Karl Landsteiner University of Health Sciences (KL) is part of an academic and research community located at the Campus Krems, and includes a network of comprising teaching hospitals in St. Pölten, Krems and Tulln. The university offers degree programs in Human Medicine, Psychotherapy, Counselling Sciences and Psychology and are tailored to the requirements of the Bologna model, opening the door to new, cutting-edge health professions. KL is committed to raising its profile in specific areas of biomedicine, biomedical engineering, and biopsychosocial sciences by entering into strategic academic and research partnerships with other institutions.

Starting at November 2018, the department of anatomy and biomechanics (division of biomechanics, Prof. Pahr, Dr. Reisinger) offers a research position, which is limited to the duration of three years:

Research Assistant m/f (Pre Doc, 30 h)

Your responsibilities:

  • Participation in the funded research project “A morphology based failure criterion for implanted bone screws”
  • In more detail: using of micro CT imaging, biomechanical testing, continuum mechanics, and 3d- printing
  • Programming of evaluation- and analysis scripts
  • Assistance in teaching in the fields of mathematics, physics, informatics and biomedical engineering
  • Engagement in other research projects

Your profile:

  • Degree in civil or mechanical engineering, biomedical engineering, technical physics, or similar fields
  • Basic knowledge in programming, biomechanics, imaging (CT), experimental material
  • characterization
  • Good English skills
  • The willingness to support teaching, experience is of advantage
  • Self-responsible and reliable working approach
  • Interest on scientific working and writing a dissertation
  • Friendly and team oriented personality

Your perspective:

  • You can expect a challenging job in an internationally recognized and highly motivated team
  • Achieve the academic degree of a PhD (Dr. techn.), issued from the TU Vienna.

The Karl Landsteiner University of Health Sciences is dedicated to achieving a balanced mix of male and female academic and non-academic staff. Consequently, applications from female candidates are particularly welcome.

The minimum gross salary for this position is € 2.112,40 (30 h).

Applications should include a motivation letter, curriculum vitae, and credentials and should be mailed by 17.10.2018 to Ms. Christina Schwaiger of the Karl Landsteiner University of Health Sciences, Dr.-Karl- Dorrek-Straße 30, 3500 Krems, Austria (bewerbung@kl.ac.at).