EFFECT OF IMPACT VELOCITY ON THE LOWER LIMB STRETCH-SHORTENING CYCLE MUSCLE FUNTION

Vassilios Panoutsakopoulos, Nikolaos Papachatzis, Petros Athanasakis, Konstantinos Aggeloudis, Iraklis A. Kollias

Biomechanics Laboratory, Department of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Introduction

Stretch-shortening cycle muscle function (SSC) can be effectively trained using free drop jumps (DJ) and jumps on sledge jump systems (SLJ) [Bubeck & Gollhofer, 2004]. The use of jumps using pendulum devices (PDJ) was shown to be also effective regarding SSC [Trzaskoma, 1994; Trzaskoma et al, 2010] since the total body mechanical power output is enhanced. Despite the fact that SSC modifications caused by different impact velocity magnitude (V_{IMP}) were reported in DJ and SLJ studies [Bubeck & Gollhofer, 2001], impact parameters were not controlled in previous PDJ studies [Fowler & Lees, 1998]. The purpose of the present study was to examine the biomechanical differences of PDJ executed with 75%, 100% and 125% of the nominal V_{IMP} during a DJ from 40cm.

Methods

27 healthy Physical Education Students $(23.0 \text{yrs} \pm 3.8, 1.85 \text{m} \pm 0.06, 82.8 \text{kg} \pm 7.8)$ participated in the study. An instrumented bifilar pendulum swing device with a fixed seat [Panoutsakopoulos, 2011] was used for the PDJ. The desired V_{IMP} was achieved by releasing the device after lifting it to the proper position. A digital video camera (100fps) recorded the tests and EMG activity from eight lower limb muscles was collected ($S_f = 1 \text{kHz}$). PDJ kinematic data were simultaneously acquired ($S_f = 500$ Hz) from a force-platform on the wall and from the attached to the pendulum goniometer, accelerometer and force transducer (Figure 1). Differences among V_{IMP} conditions were examined with repeated measures ANOVA using the SPSS 10.0.1 (SPSS, Chicago, Il) software.

Figure 1: Illustration of the experimental set-up (left) and representational acquired data (right).

Results

PDJ performance was significantly (p < .05) enhanced as V_{IMP} increased ($V_{IMP75\%}$: 0.40m ± 0.09, $V_{IMP100\%}$: 0.43m ± 0.07, $V_{IMP125\%}$: 0.45m ± 0.08). Table 1 presents the observed values for contact time (t_C), maximum reaction force (F), maximum total body mechanical power output (P), knee angle at its maximum flexion (ϑ_K) and maximum knee extension angular velocity (ω_K) during the contact phase. EMG activity was greater in $V_{IMP100\%}$ compared to the two other experimental conditions.

Parameter	V _{IMP75%}	V _{IMP100%}	V _{IMP125%}
t _C (msec)	428 (89)	443 (65)	473 (57)* [#]
F (kN)	2.0 (0.3)	2.2 (0.3)*	2.4 (0.3)*#
P (kW)	4.7 (0.9)	5.0 (0.9)	$4.4(1.0)^{\#}$
$\boldsymbol{\vartheta}_{\mathbf{K}}$ (rad)	1.6 (0.3)	1.3 (0.2)*	1.2 (0.2)*#
$\omega_{\rm K}$ (rad/sec)	12.6 (2.0)	13.4 (1.9)*	12.8 (2.3)

Table 1: Mean (Standard Deviation) values of the PJD biomechanical parameters examined (*: $p < 0.05 \text{ vs. } V_{IMP75\%}$; [#]: $p < 0.05 \text{ vs. } V_{IMP100\%}$).

Discussion

Modifications in SSC of PDJ were observed confirming similar observations concerning DJ and SLJ [Bubeck & Gollhofer, 2001], where an increased V_{IMP} results in differences concerning t_C, F, ϑ_K and EMG activity. Further research is necessary in order to identify the optimum stretch load needed to improve SSC during PDJ training.

References

Bubeck D, & Gollhofer A, Proc 4th ICST:82-83, 2004.

Bubeck D, & Gollhofer A, Eur J Sport Sci, 1(3):1-17, 2001.

Fowler NE, & Lees A, J Appl Biomech, 14(3):260-275, 1998.

Panoutsakopoulos V, Proc 3rd EMUNI Research Souk:140-149, 2011.

Trzaskoma Z, Biol Sport, 11(Suppl. 6):3-119, 1994.

Trzaskoma L *et al*, J Strength Cond Res, 24(9):2498-2505, 2010.