A NEW VISCO-HYPERELASTIC-DIFFUSION MATERIAL MODEL FOR INTERVERTEBRAL DISCS
Marzieh Azarnoosh, Malte Strampe, Marcus Stoffel, Dieter Weichert
Institute of General Mechanics, RWTH Aachen University, Aachen, Germany

Introduction
Biomechanical investigations of human tissues and cartilages have greatly helped to improve people’s health over the last several decades. The study of cartilage’s underlying mechanical characteristics is a key issue for its successful application and integration in the human body. Based on experimental tests and on cartilage histosstructural data, including fiber orientation, a suitable material model is developed. This allows us to numerically study the mechanical behaviour of an intervertebral disc, consisting of a cartilaginous ring surrounding a fluid core. Herein, we present a three dimensional finite element (FE) model an intervertebral disc under various loading conditions. The paper concludes with a detailed description of the process simulation and a comparison of its results with experimental data.

Methods
To study the behavior of an intervertebral disc, several experimental tests were carried out in a bioreactor with a tempered nutrient solution. This ensures a steady nutrient supply to the intervertebral discs over a long period of time [Stoffel, 2012]. The observed results characterize the material’s hyperelastic ([Gasser, 2006] and [Holzapfel, 2010]), viscoelastic and diffusion properties. Consequently, the continuum framework is based on the additive split of the stress rate as

$$\dot{\sigma} = \dot{\sigma}^{h} + \dot{\sigma}^{ve} + \dot{\sigma}^{d}$$ \hspace{1cm} (1)

into hyperelastic $\dot{\sigma}^{h} = C \dot{\varepsilon}$, viscoelastic $\dot{\sigma}^{ve} = \dot{\bar{C}} (\dot{\varepsilon}) \dot{\varepsilon}$, and diffusion $\dot{\sigma}^{d} = -D_0 \dot{\varepsilon}$ parts. Here, C and $\dot{\bar{C}}$ are tensors of hyperelastic and viscoelastic coefficients. Additionally, the diffusion parameter $D = D_0 + D_1 \varepsilon_\nu$ is defined to be dependent on the volume strain ε_ν, where D_0 and D_1 are the parameters which should be verified by experiments. An implicit numerical solution algorithm to calculate the stress increment is implemented into ABAQUS via a user material subroutine UMAT.

Results
To see the merits of the proposed approach, we determine the stress on the intervertebral disc of a sheep (Fig. 1). We make a compression test on a sheep’s intervertebral disc in a bioreactor to validate the numerical results (Fig.2).

Figure 1: Distribution of the stress on a sheep’s intervertebral disc.

Figure 2: Compression test on a sheep’s intervertebral disc in a bioreactor

References