BIOMECHANICAL PROPERTIES OF BONE IN A MURINE MODEL OF RETT SYNDROME

Bushra Kamal1,2,3, Diogo Constante4,5, Stuart Cobb1, Anthony Payne2, K. Elizabeth Tanner5
1Institute of Neuroscience and Psychology, University of Glasgow, Scotland, U.K; 2Laboratory of Human Anatomy, University of Glasgow, Scotland, U.K; 3Department of Anatomy, Khyber Medical University, Pakistan; 4Faculty of Engineering, University of Porto, Portugal; 5School of Engineering, University of Glasgow, Scotland, UK

Introduction
Rett Syndrome (RTT) is an X-linked genetic disease that is classically considered a neurodevelopmental disorder. However, the gene mutated in RTT, methyl-CpG binding protein 2 (Mecp2), is expressed ubiquitously in peripheral tissues and in addition to neurological phenotypes, skeletal anomalies including reduced bone mass and fractures are a common features of the condition. RTT is generally lethal in males while girls survive but with profound disabilities. In order to explore whether Mecp2 protein-deficiency results in altered bone properties, we conducted biomechanical testing on both cortical and cancellous bone from mice in which Mecp2 is functionally silenced (Mecp2stop/y) and mice in which the RTT-like phenotype is rescued by Mecp2 gene reactivation (Mecp2stop/y/CreER). This is the first study to explore the biomechanical integrity of bone in a (Mecp2stop/y/CreER) mouse model of Rett Syndrome.

Materials and Methods
Mecp2stop/y male mice (n = 5; mean age = 14wk±0.7wks) and Mecp2stop/+ female mice (n≥3; mean age = 17±1 months) along with the age-matched Mecp2stop/y/CreER mice and wildtype controls were treated with Tamoxifen as described [Guy 2007]. The age difference between genders is necessitated by the differences in phenotype onset, severity and lethality in males. Tibial and femoral shafts were subjected to three point bending test to assess the cortical bone and the femoral necks to fracture test to measure the cancellous bone, using a Zwick/Roell Z2.0 testing machine. Microindentation testing was performed using a Wilson Wolpot Micro-Vickers 401MVA machine and at an applied load of 25gf.

Results
Both Mecp2stop/y male mice in which Mecp2 is silenced in all cells and female Mecp2stop/+ mice in which Mecp2 is silenced in ~50% of cells showed significant reductions in bone stiffness and hardness (Fig 1). Furthermore, unsilencing of Mecp2 in adult mice by cre-mediated stop cassette deletion resulted in a restoration of tibia stiffness, load properties, bending modulus and femur microhardness values to wild-type levels.

![Fig 1](image_url)

Discussion
Previous studies [Jefferson, 2011; Shapiro, 2010; Zysman, 2006] have reported that reduced bone strength, bone mineral deficits, increase risk of fracture and bone related disorders are fairly common in RTT. We have shown the reversibility of bone defects identified in hemizygous male Stop/y and heterozygous female Stop/+ mouse model following Mecp2 gene reactivation. This significant improvement in bone properties after the Mecp2 gene reactivation points towards the potential application of intervention gene therapy for peripheral phenotypes in RTT patients.

References